LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F0047T
Examination date	$2014-03-18$
Time	$9.00-14.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Examiner: Hans Weber
Tel: (49)2088, Room E304
Tel: (49)2088, Room E304
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?
Note: Do not make guesses, a wrong answer will be counted negative! (No answer to one of the items is counted as zero)
(a) $\psi(t)=\cos \omega t$ and $\hat{A}=i \hbar \frac{\partial^{2}}{\partial t^{2}}$.
(b) $\psi(x)=e^{i k x}$ and $\hat{A}=\frac{\partial}{\partial x}$.
(c) $\psi(x)=e^{-a x^{2}}$ and $\hat{A}=\frac{\partial}{\partial x}$.
(d) $\psi(x)=\cos k x$ and $\hat{A}=\frac{\partial}{\partial x}$.
(e) $\psi(x)=k x$ and $\hat{A}=\frac{\partial}{\partial x}$.
(f) $\psi(x)=\sin k x$ and $\hat{A}=\hat{P}=$ the parity operator.
(g) $\psi(z)=C\left(1+z^{2}\right)$ and $\hat{A}=-i \hbar \frac{\partial}{\partial z}$.
(h) $\psi(z)=C e^{-3 z}$ and $\hat{A}=-i \frac{\hbar}{2} \frac{\partial}{\partial z}$.
(i) $\psi(z)=C z e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.

2. Perturbed Harmonic oscillator

A particle of mass m is described as a 1 dimensional anharmonic oscillator. The Hamiltonian of the system is

$$
H_{0}=\frac{p_{x}^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}+\gamma x^{4} .
$$

(a) Assuming that γ is small, use first-order perturbation theory to calculate the ground state energy.
(b) What if the anharmonic perturbation above γx^{4} would instead originate from an electric field described by ϵx where ϵ is small. The appropriate Hamiltonian would be:

$$
H_{0}=\frac{p_{x}^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}+\epsilon x .
$$

Use first-order perturbation theory to calculate the energy of the ground state and the lowest excited state.

3. Wave functions and eigenfunctions

Consider a free particle with mass m in one dimension. The wave function of the particle at $t=0$ is given by

$$
\psi(x, t=0)=\cos ^{3}(k x)+\sin ^{3}(k x) .
$$

(a) Show that the state function $\psi(x, 0)$ can be written as a superposition of eigenfunctions of the free-particle Hamiltonian.
(b) Determine the energy of each plane wave in the superposition.
(c) Give the wave function $\psi(x, t)$ at an arbitrary time t.

4. Harmonic oscillator

A particle of mass m in the harmonic oscillator potential starts out $(t=0)$ in the state

$$
\Psi(x, t=0)=A\left(1+2 \sqrt{\frac{m \omega}{\hbar}} x\right)^{2} e^{-\frac{m \omega}{2 \hbar} x^{2}}
$$

for some constant A.
(a) What is the expectation value of the energy ?
(b) At some later time t the wave function is

$$
\Psi(x, t)=B\left(1-2 \sqrt{\frac{m \omega}{\hbar}} x\right)^{2} e^{-\frac{m \omega}{2 \hbar} x^{2}}
$$

for some constant B (note sign change!). What is the smallest possible value for the time t ?

5. Eigenfunctions and uncertainty

An electron confined in a quantum well has five discrete energy levels $E_{1}=0.25 \mathrm{eV}$, $E_{2}=0.95 \mathrm{eV}, E_{3}=2.12 \mathrm{eV}, E_{4}=3.23 \mathrm{eV}, E_{5}=4.79 \mathrm{eV}$. It is in a state in which the probabilities associated with these energies are $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{24}$ and $\frac{1}{24}$ respectively.
(a) Find the expectation value of its energy $\langle\hat{H}\rangle$ and the corresponding uncertainty $\Delta \hat{H}$.
(b) Obtain an expression for the wave function $\Psi(x)$ describing the state of the particle in terms of its energy eigenfunctions $\psi_{n}(x)$ at time $t=0$. Why is the expression not unique? Write down two different wave functions corresponding to the same values of $\langle\hat{H}\rangle$ and $\Delta \hat{H}$ that you found in (a).
(c) Assume the potential is the infinite square well of width L, and you would have calculated $\langle\hat{H}\rangle$ in some way. If one adiabatically would increase L to $3 L$ by how much would $\langle\hat{H}\rangle$ change? Adiabatically means we are not inducing transitions between levels in the system.

