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Define notations and motivate assumptions and approximations. Present the solutions so that
they are easy to follow. Maximum number of point is 15 p. 8.0 points are required to pass the
examination. Grades 3: 8.0, 4: 10.0, 5: 12.0

1. Time evolution of solution

A particle of mass m, which moves freely inside a one–dimensional infinite square well
potential of length a, has the following initial wave function at time t = 0:
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where A is a real constant.

a) Find A so that ψ(x, 0) is normalised.

b) If a measurement of the energy is carried out at t = 0, what are the values that can
be found and what are the corresponding probabilities? Calculate the average energy
of the particle < E >.

c) Find the wave function ψ(x, 0) at any later time t.

(3p)

2. Reflection and transmission at a potential step

Consider an electron of energy E incident on the potential step V (x),

V (x) =

{
0 for x < 0
V0 for x > 0

where V0 = 4.5 eV. Calculate the reflection coefficient R and the transmission coefficient T

a) when E = 2.0 eV,

b) when E = 5.0 eV,

c) when E = 7.0 eV.

(3p)

TURN PAGE!



3. Expectation values of the Harmonic oscillator in 1d

For the ground state of the one dimensional Harmonic oscillator calculate:

a) the four expectation values 〈x〉, 〈p〉, 〈x2〉, 〈p2〉 by explicit integration.

b) the uncertainty ∆x ·∆p and validate that the uncertainty principle holds.

(3p)

4. Parity operator

The parity operator Π̂, acts on a function Ψ(x) in the following way Π̂Ψ(x) = Ψ(−x) =
λΨ(x) where the equality is valid only if the function Ψ is an eigenfunction to the operator
Π̂, the eigenvalue λ can take two possible values ±1.

(a) Show that the following functions are eigenfunctions of the parity operator and find
the corresponding eigenvalue in each case.

i. Ψ1(x) = C
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ii. Ψ2(x, y, z) = Ce−a
√
x2+y2+z2

iii. Ψ3(r, θ, φ) = Cf(r) (cos(θ) + cos3(θ)) eiφ

(b) If ψ+(x, y, z) and ψ−(x, y, z) are eigenfunctions of Π̂ corresponding to eigenvalues +1
and -1 respectively.

i. Is the function Ψ = 2ψ+(x, y, z) + 3ψ−(x, y, z) an eigenfunction of the parity
operator?

ii. Show that it is an eigenfunction of Π̂2, and find the eigenvalue.

iii. Do the functions e−ikx and eikx have parity? If yes what are their eigenvalues. If no
form linear combinations that have a definite parity and what are their eigenvalues.

(3 p)

5. Two dimensional Square well

A particle is placed in the potential (a 2 dimensional square well)
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(a) Calculate (solve the Schrödinger equation) the eigenfunctions !

(b) Write down the eigenfunctions for the ground state and one for the lowest excited
states. Formulate the meaning of orthogonallity and show by explicit calculation that
these two eigenfunctions are orthogonal.

(3p)

GOOD LUCK !


