LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

| Course code | F0047T |
| :--- | :--- |
| Examination date | $2015-08-29$ |
| Time | $9.00-14.00$ (5 hours) |

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Examiner: Hans Weber
Tel: (49)2088, Room E304
Tel: (49)2088, Room E304
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

## 1. Time evolution of a solution

A particle of mass $m$, which moves freely inside a one-dimensional infinite square well potential of length $a$, has the following initial wave function at time $t=0$ :

$$
\psi(x, 0)=\sqrt{\frac{11}{8 a}} \sin \left(\frac{\pi x}{a}\right)+\frac{1}{2 \sqrt{a}} \sin \left(\frac{4 \pi x}{a}\right)+\frac{A}{\sqrt{a}} \sin \left(\frac{5 \pi x}{a}\right)
$$

where $A$ is a real constant.
a) Find $A$ so that $\psi(x, 0)$ is normalised.
b) If a measurement of the energy is carried out at $t=0$, what are the values that can be found and what are the corresponding probabilities? Calculate the average energy of the particle $<E>$.
c) Find the wave function $\psi(x, t)$ at any later time $t$.

## 2. Quantum rotator

The Hamiltonian (in units of eV ) for a given axially symmetric quantum rotator is

$$
\begin{equation*}
H=\frac{L_{x}^{2}+L_{y}^{2}}{2 \hbar^{2}}+\frac{L_{z}^{2}}{3 \hbar^{2}} \tag{3p}
\end{equation*}
$$

What are the possible energies?

## 3. Measurement of spin

A spin $\frac{1}{2}$ particle is prepared to be in an eigenstate to $S_{z}$ with eigenvalue $+\frac{1}{2} \hbar$. A subsequent measurement of the spin in the direction $\hat{n}=\sin (\varphi) \hat{e}_{y}+\cos (\varphi) \hat{e}_{z}$ is made. The value of $\varphi$ is $\pi / 4$.
(a) What is the probability to get the value $+\hbar / 2$ and $-\hbar / 2$ in this new direction $\hat{n}$ ?
(b) What would the result (eigenvalue and probability) be of a subsequent measurement in the $z$-direction of the $+\hbar / 2$ state in a)?

## 4. Three-dimensional box well

A particle is placed in the potential (a 3 dimensional box well)

$$
V(x, y, z)=\left\{\begin{array}{cl}
0 & \text { for } \quad 0 \leq x \leq a \text { and } 0 \leq y \leq a \text { and } 0 \leq z \leq \frac{\mathbf{a}}{\mathbf{2}} \\
+\infty & \text { for } \quad x>a \text { or } x<0 \text { or } y>a \text { or } y<0 \text { or } z>\frac{\mathbf{a}}{\mathbf{2}} \text { or } z<0
\end{array}\right.
$$

(a) Calculate (solve the Schrödinger equation) the eigenfunctions ?
(b) What are the 7 lowest eigenenergies ?
(c) What are the degeneracies of the states associated to these 7 lowest eigenenergies ?

## 5. Perturbed Harmonic oscillator

A particle of mass $m$ is described as a 1 dimensional anharmonic oscillator. The Hamiltonian of the system is

$$
H_{0}=\frac{p_{x}^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}+\gamma x^{4} .
$$

(a) Assuming that $\gamma$ is small, use first-order perturbation theory to calculate the ground state energy.
(b) What if the anharmonic perturbation above $\gamma x^{4}$ would instead originate from an electric field described by $\epsilon x$ where $\epsilon$ is small. The appropriate Hamiltonian would be:

$$
H_{0}=\frac{p_{x}^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}+\epsilon x
$$

Use first-order perturbation theory to calculate the energy of the ground state and the lowest excited state.

