Course code	F0047T
Examination date	$2016-01-12$
Time	$15.00-20.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Tel: (49)2088, Room E304
Examiner: Hans Weber
Tel: (49)2088, Room E304
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .8 .0 points are required to pass the examination. Grades 3: 8.0, 4: 10.0, 5: 12.0

1. Angular momentum and r in Hydrogen

An electron bound in a hydrogen atom is described by the following state:

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N x y e^{-\sqrt{x^{2}+y^{2}+z^{2}} / 3 a_{0}}
$$

where a_{0} is the Bohr radius and N is a constant (normalisation).
(a) A measurement of L^{2} and L_{z} is done on the system. Calculate the possible values and their probabilities.
(b) Calculate the expectation value of the electrons distance $\langle r\rangle$ from the nucleus.

2. A quantum system at temperature

A quantum system has four eigenstates with energies according to

$$
E_{n_{1}, n_{2}}=\left(n_{1}+n_{2}+1\right) \hbar \omega
$$

where n_{1}, n_{2} are integers $n_{i}=0,1$. The quantum system is coupled to a heatbath of temperature T with which it can exchange energy.
(a) Calculate the partition function of the system for any temperature.
(b) At what temperature T equals the probability to find the quantum system in a state of energy $\hbar \omega$ to find it in a state of energy $2 \hbar \omega$?
(c) How large is this probability?

3. Molecular spectra

Carbon monoxide is the second-most common molecule in the interstellar medium, after molecular hydrogen. Interstellar CO was first detected with radio telescopes in 1970.

In the VPL Molecular Spectroscopic Database the two graphs for the Carbon monoxide molecular spectra shown in figure 1 are found. The spectra consist of both rotational and vibrational levels.

In the lectures only the vibrational transitions with $\Delta n= \pm 1,0$ have been covered. In a real material however the potential is not purely harmonic (pure harmonic potential is $V(x)=k x^{2}$) but other anharmonic (like x^{4}) contributions exist. Due to these anharmonic contributions also vibrational transitions with higher changes in n are allowed ie $\Delta n= \pm 2$. These transitions are however much rarer as their transition probability is much lower.

Figure 1: Two spectra for Carbon monoxide (CO) in the micro wave range. Shown is intensity as a function of wavelength. Note: the scale on the x -axis is in $\mu \mathrm{m}$.
(a) Of the two spectra which one (upper/lower) belongs (determine by inspection) to the anharmonic vibrational transition and which one belongs to the harmonic vibrational transition? Motivate!
(b) With data taken from the (the harmonic vibrational spectra) graph calculate the distance between the two atoms of the molecule.
(c) Explain the apparent missing line in the middle of the spectra (the harmonic vibrational spectra).

4. Spin

Evaluate for a spin $1 / 2$ particle described by the spinor χ the expectation values of the 3 cartesian components ($<S_{x}>,<S_{y}>,<S_{z}>$) of the spin and also their squares $\left(<S_{x}^{2}>,<S_{y}^{2}>,<S_{z}^{2}>\right)$

$$
\chi=\frac{1}{3}\binom{2-i}{2} .
$$

5. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?
Note: Do not make guesses, a wrong answer will be counted negative! (No answer to one of the items is counted as zero)
(a) $\psi(t)=\cos \omega t$ and $\hat{A}=i \hbar \frac{\partial^{2}}{\partial t^{2}}$.
(b) $\psi(x)=e^{i k x}$ and $\hat{A}=\frac{\partial}{\partial x}$.
(c) $\psi(x)=e^{-a x^{2}}$ and $\hat{A}=\frac{\partial}{\partial x}$.
(d) $\psi(x)=\cos k x$ and $\hat{A}=\frac{\partial}{\partial x}$.
(e) $\psi(x)=k x$ and $\hat{A}=\frac{\partial}{\partial x}$.
(f) $\psi(x)=\sin k x$ and $\hat{A}=\hat{P}=$ the parity operator.
(g) $\psi(z)=C\left(1+z^{2}\right)$ and $\hat{A}=-i \hbar \frac{\partial}{\partial z}$.
(h) $\psi(z)=C e^{-3 z}$ and $\hat{A}=-i \frac{\hbar}{2} \frac{\partial}{\partial z}$.
(i) $\psi(z)=C z e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.

