LULEÅ UNIVERSITY OF TECHNOLOGY
Applied Physics

Course code	F0047T
Examination date	$2017-03-14$
Time	$9.00-14.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Nils Almqvist Tel: (49)2291, Room E303
Examiner: Hans Weber
Tel: (49)2088, Room E163
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .5 points are required to pass the examination. Grades 3: 7.5, 4: 10.0, 5: 12.0

1. Two dimensional Square well and parity

A particle is placed in the potential (a 2 dimensional square well)

$$
V(x)=\left\{\begin{array}{cll}
0 & \text { for } & -\frac{a}{2} \leq x \leq \frac{a}{2} \text { and }-\frac{a}{2} \leq y \leq \frac{a}{2} \\
+\infty & \text { for } & x>\frac{a}{2}, x<-\frac{a}{2} \text { and } y>\frac{a}{2}, y<-\frac{a}{2} .
\end{array}\right.
$$

(a) Calculate (solve the Schrödinger equation !) the eigenfunctions !
(b) The Hamiltonian commutes with the parity operator $P, P \Psi(x, y)=\Psi(-x,-y)=$ $\lambda \Psi(x, y)$ where the eigenvalue λ can take two possible values ± 1.
Write down the eigenstates corresponding to the four lowest energies in such a way that they are also eigenfunctions of the parity operator P. What is the parity of these states?

2. Misc.

a) Evaluate the commutator $\left[x^{2}, p_{x}^{2}\right]$.
b) Li^{2+} has the nuclear charge +3 but only one electron. How much energy does it take to excite the electron from the ground state to the level 2 p ? Give a numerical value in electron Volts (eV)!
c) The wave function of a hydrogen atom in an eigenstate to the Hamilton operator is:

$$
\Psi(r, \theta, \phi)=\frac{1}{81 \sqrt{6 \pi}}\left(1 / a_{\mu}\right)^{3 / 2}\left(r^{2} / a_{\mu}^{2}\right) e^{-r / 3 a_{\mu}}\left[3 \cos ^{2} \theta-1\right],
$$

where a_{μ} is the Bohr radius (with the reduced mass). Determine the quantum numbers n, l och m_{l}.

3. Quantum rotator

The Hamiltonian (in units of eV) for a given axially symmetric quantum rotator is (Pay attention to the subscripts)

$$
H=\frac{L_{z}^{2}+L_{y}^{2}}{2 \hbar^{2}}+\frac{L_{x}^{2}}{4 \hbar^{2}} .
$$

Write down an expression for the eigenenergys. How are the quantum numbers related ? (3p)

4. Time evolution of a solution

A particle of mass m, which moves freely inside a one-dimensional infinite square well potential of length a, has the following initial wave function at time $t=0$:

$$
\psi(x, 0)=\frac{A}{\sqrt{a}} \sin \left(\frac{\pi x}{a}\right)+\frac{1}{\sqrt{5 a}} \sin \left(\frac{5 \pi x}{a}\right)
$$

where A is a real constant.
a) Find A so that $\psi(x, 0)$ is normalised.
b) If a measurement of the energy is carried out at $t=0$, what are the values that can be found and what are the corresponding probabilities? Calculate the average energy of the particle $<E>$.
c) Find the wave function $\psi(x, 0)$ at any later time t.

5. Particle in one dimensional potential

A particle of mass m moves in one dimension under the influence of a potential $V(x)$. Suppose the particle is in an energy eigenstate $\psi(x)=\left(\frac{\gamma^{2}}{\pi}\right)^{\frac{1}{4}} e^{-\gamma^{2} x^{2} / 2}$ with energy $E=\frac{\hbar^{2} \gamma^{2}}{2 m}$.
(a) Calculate the expectation value of the position $x,(\langle x\rangle)$.
(b) Calculate the expectation value of the momentum $p_{x},\left(\left\langle p_{x}\right\rangle\right)$.
(c) Find $V(x)$.

