LULEÅ UNIVERSITY OF TECHNOLOGY
Applied Physics

| Course code | F0047T |
| :--- | :--- |
| Examination date | $2017-08-26$ |
| Time | $9.00-14.00$ (5 hours) |

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber Tel: (49)2088, Room E163
Examiner: Hans Weber Tel: (49)2088, Room E163
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .5 points are required to pass the examination. Grades 3: 7.5, 4: 10.0, 5: 12.0

## 1. Reflection and transmission at a potential step

Consider an electron of energy $E$ incident on the potential step $V(x)$,

$$
V(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
V_{0} & \text { for } & x>0
\end{array}\right.
$$

where $V_{0}=4.5 \mathrm{eV}$. Calculate the reflection coefficient $R$ and the transmission coefficient $T$
a) when $E=2.0 \mathrm{eV}$,
b) when $E=5.0 \mathrm{eV}$,
c) when $E=7.0 \mathrm{eV}$.

## 2. Measurement of spin

A spin $\frac{1}{2}$ particle is prepared to be in an eigenstate to $S_{z}$ with eigenvalue $+\frac{1}{2} \hbar$. A subsequent measurement of the spin in the direction $\hat{n}=\sin (\varphi) \hat{e}_{y}+\cos (\varphi) \hat{e}_{z}$ is made. The value of $\varphi$ is $\pi / 4$.
(a) What is the probability to get the value $+\hbar / 2$ and $-\hbar / 2$ in this new direction $\hat{n}$ ?
(b) What would the result (eigenvalue and probability) be of a subsequent measurement in the $z$-direction of the $+\hbar / 2$ state in a) ?

## 3. Wave functions and eigenfunctions

Consider a free particle with mass $m$ in one dimension. The wave function of the particle at $t=0$ is given by

$$
\psi(x, t=0)=\cos ^{3}(k x)+\sin ^{3}(k x)
$$

(a) Show that the state function $\psi(x, 0)$ can be written as a superposition of eigenfunctions of the free-particle Hamiltonian.
(b) Determine the energy of each plane wave in the superposition.
(c) Give the wave function $\psi(x, t)$ at an arbitrary time $t$.

## 4. Perturbed Harmonic oscillator

A particle of mass $m$ is described as a 1 dimensional anharmonic oscillator. The Hamiltonian of the system is

$$
H=\frac{p_{x}^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}+\gamma x^{4}
$$

(a) Assuming that $\gamma$ is small, use first-order perturbation theory to calculate the ground state energy.
(b) What if the anharmonic perturbation above $\gamma x^{4}$ would instead originate from an electric field described by $\epsilon x$ where $\epsilon$ is small. The appropriate Hamiltonian would be:

$$
H=\frac{p_{x}^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2}+\epsilon x .
$$

Use first-order perturbation theory to calculate the energy of the ground state and the lowest excited state.

## 5. Angular momentum

Suppose an electron is in a state described by the wavefunction

$$
\psi=\frac{1}{\sqrt{4 \pi}}\left(e^{i \phi} \sin (\theta)+\cos (\theta)\right) g(r)
$$

where

$$
\int_{0}^{\infty}|g(r)|^{2} r^{2} d r=1
$$

and $\phi, \theta$ are the azimuth and polar angles respectively.
(a) What are the possible results of a measurement of the z-component $L_{z}$ of the angular momentum of the electron in this state?
(b) What is the probability of obtaining each of the possible results in part (a) ?
(c) What are the expectation values of $L_{z}$ and $L^{2}$ ?

