LULEÅ UNIVERSITY OF TECHNOLOGY Applied Physics

Course code	F0047T
Examination date	2019-08-31
Time	9.00 - 14.00 (5 hours)

Examination in:	KVANTFYSIK /	Quantum	Physics
Teacher on duty:	Hans Weber	Tel: $(49)208$	8, Room E163
Examiner: Hans V	Weber	Tel: $(49)208$	8, Room E163

Allowed aids: Fysikalia/Fysika, Physics Handbook, Beta, calculator, COLLECTION OF FORMULAE

Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow.

Total number of problems: **5**. Maximum number of point is 15 p. 7.5 points are required to pass the examination. Grades 3: 7.5, 4: 10.0, 5: 12.0

1. Hydrogen atom

Consider a hydrogen atom whose wave function at t = 0 is the following superposition of energy eigenfunctions $\psi_{nlm_l}(\mathbf{r})$:

$$\Psi(\mathbf{r}, t=0) = \frac{1}{\sqrt{15}} \left(3\psi_{100}(\mathbf{r}) - 2\psi_{200}(\mathbf{r}) + \psi_{320}(\mathbf{r}) - \psi_{322}(\mathbf{r}) \right)$$

- (a) Is this wave function an eigenfunction of the parity operator $\hat{\Pi}$?
- (b) What is the probability of finding the system in the ground state? In the state (200)? In the state (320)? In the state (322)? In any other state?
- (c) What is the expectation value of the energy (in eV); of the operator \mathbf{L}^2 (in units of \hbar^2); of the the operator L_z (in units of \hbar).

(3p)

2. Particle in one dimensional potential

A particle of mass m moves in one dimension under the influence of a potential V(x). Suppose the particle is in an energy eigenstate $\psi(x) = \left(\frac{\gamma^2}{\pi}\right)^{\frac{1}{4}} e^{-\gamma^2 x^2/2}$ with energy $E = \frac{\hbar^2 \gamma^2}{2m}$.

- (a) Calculate the expectation value of the position x, $(\langle x \rangle)$.
- (b) Calculate the expectation value of the momentum p_x , $(\langle p_x \rangle)$.
- (c) Find V(x).

(3p)

TURN PAGE!

3. Misc.

- a) Evaluate the commutator $[x^2, p_x^2]$.
- b) Li²⁺ has the nuclear charge +3 but only one electron. How much energy does it take to excite the electron from the ground state to the level 2p? Give a numerical value in electron Volts (eV)!
- c) The wave function of a hydrogen atom in an eigenstate to the Hamilton operator is:

$$\Psi(r,\theta,\phi) = \frac{2\sqrt{5}}{9\sqrt{6\pi}} (1/a_{\mu})^{3/2} \frac{r}{a_{\mu}} \left(1 - \frac{r}{6a_{\mu}}\right) e^{-r/3a_{\mu}} [3\cos^2\theta - 1],$$

where a_{μ} is the Bohr radius (with the reduced mass). Determine the quantum numbers n, l och m_l .

(3p)

4. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?

Note: Do not make guesses, a wrong answer will be counted negative ! (No answer to one of the items is counted as zero)

(a) $\psi(t) = \sin(\omega t) \cos(\omega t)$ and $\hat{A} = i\hbar \frac{\partial^2}{\partial t^2}$. (b) $\psi(t) = \cos^2(\omega t) - \sin^2(\omega t)$ and $\hat{A} = i\hbar \frac{\partial^2}{\partial t^2}$. (c) $\psi(x) = \sin kx$ and $\hat{A} = \frac{\partial}{\partial x}$. (d) $\psi(x) = kx^2$ and $\hat{A} = \frac{\partial}{\partial x}$. (e) $\psi(z) = Cze^{-\frac{1}{2}z^2}$ and $\hat{A} = \frac{1}{2}(z^2 - \frac{\partial^2}{\partial z^2})$. (f) $\psi(x) = e^{ikx} + e^{-ikx}$ and $\hat{A} = \frac{\partial}{\partial x}$. (g) $\psi(x) = \cos kx$ and $\hat{A} = \hat{P}$ = the parity operator. (h) $\psi(z) = Ce^{-\omega z}$ and $\hat{A} = -i\hbar \frac{\partial}{\partial z}$. (i) $\psi(z) = C(1+z^3)$ and $\hat{A} = -i\hbar \frac{\partial}{\partial z}$.

(0 - 3 p)

TURN PAGE!

5. Two dimensional Square well and parity

A particle is placed in the potential (a 2 dimensional square well)

$$V(x) = \begin{cases} 0 & \text{for } -\frac{a}{2} \le x \le \frac{a}{2} \text{ and } -\frac{a}{2} \le y \le \frac{a}{2} \\ +\infty & \text{for } x > \frac{a}{2}, \ x < -\frac{a}{2} \text{ and } y > \frac{a}{2}, \ y < -\frac{a}{2} \end{cases}$$

- (a) Calculate (solve the Schrödinger equation !) the eigenfunctions !
- (b) The Hamiltonian commutes with the parity operator P, $P\Psi(x, y) = \Psi(-x, -y) = \lambda\Psi(x, y)$ where the eigenvalue λ can take two possible values ± 1 .

Write down the eigenstates corresponding to the four lowest **energies** in such a way that they are also eigenfunctions of the parity operator P. What is the parity of these states?