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Molecules

Electron structure and chemical binding

The binding that keeps atoms together in molecules is a quantal effect, as are most of the
properties of atoms.

Ionic binding arises when the ionisation energies of the atoms are very different, and
the atom with the largest ionisation energy is not a noble gas but has room for another
electron in the valence shell. The quantum states for the electrons when the atoms come
close are about the same as for the free atoms. One or several valence electrons will jump
over to the lower lying state with higher ionisation energy.

Figure 1: Ionisation energies, the points on the abscissa indicates closed shell. 1 kJ/mol
= .010364 eV/atom. The picture is taken from hyperphysics.phy-astr.gsu.edu

Covalent binding appears when the ionisation energies are similar. The state that the
electrons are in when the atoms are near each other are distributed over both atoms.
Roughly, the wavefunctions are linear combinations of the two wavefunctions that are
located around each atom when they are separated. If the phase factors of the states are
chosen such that wavefunctions have the same phase in the region in between the atoms,
then the two linear combinations are

ψ1 = C(φ1 + φ2)/, ψ2 = C(φ1 − φ2)/
√

2. (1)

where φ1 is the wavefunctions for one valence electron of atom 1 and φ2 of for one valence
electron of atom 2. The first one ψ1 has an energy lower then for separated atoms, hence
it is bonding. The second ψ2 has an increased energy and is thus anti bonding. In most
cases we have that one electron from each atom will occupy the bonding wavefunction.
Qualitatively, these functions can be correct, but if the Schrödinger equation is solved,
one will find that the states are somewhat modified. This can be illustrated by the one
dimensional systems with two delta potentials or two wells close to each other. Linear
combination of atomic orbitals (LCAO) is the commonly used term for states like ψ1 and
ψ2.
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The total energy of the molecule as function of the distance r between the two atoms
will depend on which of the states ψ1 and ψ2, that the valence electrons occupy. In figure
2 the total energy are shown for the two cases that there is an electron in the lower level
or that there is an electron in the upper level. Both energies are large and positive at
small distances, due to the repulsion between the nuclei and the squeezing of the other
electrons, rising their kinetic energies. Normally there are two electrons in the bonding

Figure 2: The total energy of the neutral Hydrogen molecule (H2) as function of the
distance between the atoms. The lower curve corresponds to one electron put into the
bonding state and the upper having one electron the anti-bonding state. The minimum
in the energy of the lower curve will approximately give the bond length of the chemical
bond between the two atoms

state, which approximately doubles the binding energy. If all valence states were doubly
occupied but the states φ1 and φ2 which were singly occupied before the atoms came close,
then all the valence states may now be maximally occupied, except for the anti bonding
state, which on the other hand is lifted high up in energy.

If the valence states have l > 0, then we have a chose which states to put into the LCAO
wavefunctions. There are states with different m quantum numbers to chose from and
even linear combinations of them. It is the linear combination with a positive interference
of the atomic states in between the atoms that gives the bonding wavefunction. The
binding becomes stronger the larger amplitude the atomic wavefunctions have in this
region. This indicates how the wavefunctions are chosen. For example, one does not
expect that

Φ2,1,m = R2,1(r)Y1,m, m = ±1, (2)

will enter into the LCAO directly as they do not stretch out in any specific direction,
where the other atom may be placed. The following functions are more promising in this
respect, as they stretch out along the x, y and z directions,

Φ2,1,x = (Φ2,1,−1 − Φ2,1,1)/
√

2 = R2,1(r)

√

3

4π

x

r
, (3)
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Φ2,1,y = i(Φ2,1,−1 + Φ2,1,1)/
√

2 = R2,1(r)

√

3

4π

y

r
, (4)

Φ2,1,z = Φ2,1,0 = R2,1(r)

√

3

4π

z

r
. (5)

Note, that these functions are eigenstates to the atomic Hamiltonian just as much as the
states in (2) are. When states are degenerate, any linear combination of them will also
be an eigenstate. The angular dependence of these wavefunctions are presented in figure
3. It is clear from the figure that the wavefunctions Φ2,1,x, Φ2,1,y and Φ2,1,z is equally

Figure 3: The top figures show the angular dependence of Yl,m, for l = 1, m = 0,±1,
below are shown the angular dependence for Φ(2, 1, x), Φ(2, 1, y) and Φ(2, 1, z).

much on one side of the atom as the opposite side. For many atoms the valence states
belong to several different l-values. For example, for bor, carbon, nitrogen and oxygen
both the 2s and the 2p are valence states. In such cases, it is often a linear combination of
the s- and p-states that make up the atomic states φi in the linear combinations used to
approximate the states in the molecule. These so called hybrid states give an explanation
for many features of B, C, N and O atoms in molecules. The sp3 orbitals

χ(1) = (Φ2,0,0 + Φ2,1,x + Φ2,1,y + Φ2,1,z)/
√

4 (6)

χ(2) = (Φ2,0,0 + Φ2,1,x − Φ2,1,y − Φ2,1,z)/
√

4 (7)

χ(3) = (Φ2,0,0 − Φ2,1,x + Φ2,1,y − Φ2,1,z)/
√

4 (8)

χ(4) = (Φ2,0,0 − Φ2,1,x − Φ2,1,y + Φ2,1,z)/
√

4 (9)

explain the bindings of the carbon atom in e.g. CH4. The sp3-states are tetrahedrally
oriented which gives the position of the hydrogen atoms in CH4.

The double bond of C2H4 involve the sp2-hybrid states,

χ(1) = Φ2,1,z (10)

χ(2) =
1√
3
Φ2,0,0 +

√

2

3
Φ2,1,x (11)
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Figure 4: To the left a hybrid orbital of s- and p-states, to the right the sp3 orbitals for
CH4 are shown. The four sp3 hybrid orbitals of the C atom (purple) have been modified
to eliminate the small lobes directed toward the centre of the structure; they are not
involved in orbital overlaps. The hydrogen orbitals are 1s (red). The molecular geometry
is tetrahedral; the s bond angles are 109.5o.

χ(3) =
1√
3
Φ2,0,0 −

1√
6
Φ2,1,x +

1√
2
Φ2,1,y (12)

χ(4) =
1√
3
Φ2,0,0 −

1√
6
Φ2,1,x −

1√
2
Φ2,1,y, (13)

which are illustrated in figure 5. It is the χ(1) that together with the one of the hybrid
states make up the double bond.

The dynamics of the atoms – diatomic molecules

The energy of the valence electrons decreases as the distance between the atoms decrease
until the atoms come close enough the energy start increase. For a diatomic molecule
this give rise to the potential energy V (r) which is a function of the distance r between
the atoms. This potential energy can be used to calculate the relative motion of the two
atoms if that motion is slow enough, so that the motion of the electrons is ‘fast’1 enough
to adjust to the varying positions of the atoms. The Schrödinger equation for this relative
motion of the atoms is

(

− h̄2

2µ
∇2

r + V (r)

)

uE = EuE. (14)

The reduced mass µ = M1M2/(M1 +M2) and M1, M2 are the masses of the atoms. As
the potential only depends on r = |r| the hamilton operator is rotationally invariant. The
wavefunction uE that represents the state of atoms can be written as

uE(r) =
wn,l(r)

r
Ylm(θ, φ) (15)

where the function wnl is a solution to

− h̄2

2µ

d2wnl

dr2
+

(

h̄2l(l + 1)

2µr2
+ V (r)

)

wnl(r) = Ewnl(r). (16)

1‘fast’ means here that the energy differences between different electron states is much larger than the

energy differences between the states of the relative motion of the atoms
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Figure 5: Carbon double bond in C2H4. The stronger bond in the double bond consist of
the bonding linear combination between the two different χ(2) from the two carbon atoms.
The other bond is given by the bonding linear combination of the two χ(1) orbitals that
are perpendicular to the plane of the molecule.

Let us approximate the potential energy

V (r) ≈ −V0 +
1

2
k (r − r0)

2 . (17)

For l = 0 we get a spectrum

En = h̄ω
(

n+
1

2

)

, n = 0, 1, 2, . . . (18)

This is shown by changing to the variable r′ = r − r0. As previously we have that

ω =
√

k/µ. For HCl and CO is the energy difference between the states h̄ω = 0, 36 eV
and 0, 27 eV, respectively. When you increase l, the centrifugal term changes the radial
part wnl only marginally and the energy increases with

El =
h̄2l(l + 1)

2I
, (19)

where I = µr2
0 is the moment of inertia of the molecule. The total energy is then given

by

Enl = En + El = h̄ω
(

n+
1

2

)

+
h̄2l(l + 1)

2I
. (20)

The radial factor wnl appearing in the expression in the wavefunction is for l = 0

wn,0(r) = Hn

(

r − r0
b

)

exp

(

−(r − r0)
2

b2

)

(21)
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where b =
√

h̄/mω. For l 6= 0 the function wnl is approximately the same as wn0. The
energy difference between states with different l values are much less than h̄ω. For a
molecule with two different kinds of atoms all integer values of l = 0, 1, 2, . . . 2 why the
spectra has the appearance shown in figure 6.

Figure 6: Energy levels for a diatomic molecule. The long horisontal lines mark the l = 0
levels, with the vibrational quantum number n to the right. The states with higher l-
values (the rotational bands) give a dense sequence of states for each n-value. The arrows
shows possible transitions.

It is also possible for the electrons to be in different levels, giving additional excited
states. The energy difference between the different electronic levels are normally many
times bigger than h̄ω.

When the molecule emits or absorbs a photon it changes from one state to another.
The energy difference between the states is equal to the energy of the photon. This process
is the quantum physics counterpart to the emission or reception of electromagnetic waves
of a dipole antenna. The intensity of the transition between the states A and B is
proportional to

| < A|x|B > |2 + | < A|y|B > |2 + | < A|z|B > |2. (22)

We see that the states must have different parities, else there will be no dipole radiation.
Other types of radiation may be possible but its intensities are several orders of magnitude
lower.

The parity of the states of the type RnlYlm is given by (−1)l. For dipole radiation
it is also so that l can only be changed by one unit (the total angular momentum is
conserved).This results in the rule ∆l = ±1. In the approximation that the radial motion
is that of an harmonic oscillator, there is also the rule that ∆n = 0,±1.

The energies of the emitted photons in transitions with ∆n = 0, are h̄2l1/I, where l1
is the angular momentum quantum number for the initial state. The final state l2-value
is l1 − 1 as the energy of the molecule is lowered when a photon is emitted. Accordingly
the photon energies are

h̄2

I
, 2

h̄2

I
, 3

h̄2

I
, 4

h̄2

I
, . . . (23)

2If the atoms belong to the same nucleide the nuclear spin will influence which angular momentum

values appear.
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The photon energies in transitions with ∆n = −1 are hν ± h̄2l1/I depending on if l is
lowered or raised by one unit. There therefore two series of spectral lines,

Efoton = hν +
h̄2

I
, hν + 2

h̄2

I
, . . . (24)

and

Efoton = hν − h̄2

I
, hν − 2

h̄2

I
, . . . . (25)

Figure 7: The absorption lines shown involve transitions from the ground to first excited
vibrational state of HCl, but also involve changes in the rotational state. The rotational
angular momentum changes by 1 during such transitions. If you had a transition from j=0
in the ground vibrational state to j=0 in the first excited state, it would produce a line
at the vibrational transition energy. As observed, you get a closely spaced series of lines
going upward and downward from that vibrational level difference. The splitting of the
lines shows the difference in rotational inertia of the two chlorine isotopes Cl-35(75.5The
picture is taken from hyperphysics.phy-astr.gsu.edu
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Excersises from McMurry, Quantum Mechanics

4.10 The observed rotational spectrum of the hydrogen chloride molecule consists of a set
of equally spaced lines produced by the emission (or absorption) of electric dipole
radiation. If the spacing is 20.68 cm−1, calculate the moment of inertia of the HCl
molecule. What are the energies of its four lowest rotational energy levels? Assuming
that the moment of inertia of a diatomic molecule is of the form I = mr2, estimate
the mean separation r of the atom in the molecules. (Here m = mHmCl/(mH +mCl)
is the reduced mass of the molecule. Use the mass of the isotope 35Cl: mCl = 35mH .

4.11 Light can be scattered from molecules that have no permanent electric dipole mo-
ment through first inducing such a moment. If there is no change in the rota-
tional state of the molecule, the light is scattered with no change in its frequency
(Rayleigh scattering). However, the rotational state of the molecule may be
changed from one characterised by the quantum number l to one corresponding to
l′ = l ± 2 (Raman scattering). Show that in this case the frequency of the scat-
tered light differs from that of the incident light by ∆ν = B(4l + 6), where B is a
constant characteristic of the molecule, and l = 0, 1, 2, ....

5.5 Treat a simple pendulum of mass 0.001 kg and period 1 s quantum mechanically,
and calculate its zero-point energy. If it is oscillating with amplitude 0.01 m, use
classical mechanics to find its energy. If this energy is an eigenvalue En, estimate
the value of n.

5.6 From the position of the broad vibrational spectral line in hydrogen chloride, centred
on 2886 cm−1, calculate the zero-point energy of the H35Cl. (See Problem 4.10 for the
mass of the molecule containing this isotope of chlorine.) Calculate the amplitude
of the classical oscillator with this energy. (for comparison, the mean separation of
the atoms in the molecule was calculated in Problem 4.10.)

5.8 Draw a sketch to illustrate the vibrational energy levels of a diatomic molecule, for
n = 0 and n = 1, showing the fine structure due to rotational levels from l = 0 to
4. Indicate on your diagram the electric dipole transitions that produce

(a) the purely rotational millimetre and sub millimetre spectrum.

(b) the vibrational-rotational lines in the fundamental band.
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Figure 8: Figure from McMurry, Quantum Mechanics
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