LULEÅ UNIVERSITY OF TECHNOLOGY

DIVISION OF PHYSICS Niklas Lehto

2000-11-14

The postulates of Quantum Mechanics

- (a) The wave function or state function contains all information of a physical system.
- (b) *The superposition principle*: It is possible to make linear superpositions of the dynamical states of a quantum system
- (c) There is a linear and Hermitian operator \hat{A} associated to every dynamical variable \mathcal{A} (observable \mathcal{A}).
- (d) The only result of a precise measurement of the dynamical variable \mathcal{A} is one of the eigenvalues a_n of the Hermitian operator \hat{A} associated with \mathcal{A} . A measurement will always give a real value, since \hat{A} is Hermitian
- (e) If a series of measurements is made of the observable \mathcal{A} on an ensamble of systems, described by the wave function ψ , the expectation value of this observable is

$$\left\langle \hat{A} \right\rangle = \frac{\left\langle \psi | \hat{A} | \psi \right\rangle}{\left\langle \psi | \psi \right\rangle}$$

(f) A wave function representing any dynamical state can be expressed as a linear combination of eigenfunctions of \hat{A} , where \hat{A} is the operator associated with an observable.

From (e) and (f) it follows that if a system is described by the normalized state $|\psi\rangle$, then the probability that the eigenvalue a_n will be found in a measurement of the observable \mathcal{A} is given by

$$P(a_n) = |\langle u_n | \psi \rangle|^2$$

where $|u_n\rangle$ is an eigenstate of \hat{A} .

(g) The time evolution of the wave function of a system is determined by the timedependent Schrödinger equation

$$i\hbar \frac{\partial}{\partial t}\psi(t) = \hat{H}\psi(t),$$

where H is the Hamiltonian, or the total energy operator of the system.

(h) If a measurement of the observable \mathcal{A} on a system in a state $|\psi\rangle$ yields the eigenvalue a_n , then the system is projected by the measurement into the state $|u_n\rangle$, *i.e.* the new state is given by

$$|\psi'\rangle = \frac{|u_n\rangle \langle u_n|\psi\rangle}{\sqrt{\langle \psi|u_n\rangle \langle u_n|\psi\rangle}}$$

The wave function collapse. A subsequent measurement of the observable \mathcal{A} will give the value a_n .