Solution to written exam in Quantum Physics and Statistical Physics MTF131

Examination date: 2006-08-26

1. The line that is special (due to intensity) is $\lambda=470.22 \mathrm{~nm}$ with intensity 200. The Helium ion has $Z=2$ and hence energys $E_{n}=-\frac{54.24}{n^{2}} \mathrm{eV}$. Try to find a start of the series. The energy of $\lambda=658.30 \mathrm{~nm}$ is $E=h \nu=\frac{h c}{\lambda}=\frac{6.626 \cdot 10^{-34} \cdot 2 \cdot 9979 \cdot 10^{8}}{6.5830 \cdot 10^{-7} \cdot 1.6022 \cdot 10^{-19}}=1.8833 \mathrm{eV}$ A similar calculation gives for the other lines in the series: 2.28306, 2.54250, 2.72037, 2.84760, 2.94174, 3.01333, 3.06905 and for the special line 2.63667 eV

As Balmer series in Hydrogen is for transitions down to level $n=2$ we have to go higher up for the Helium ion. If we try $\mathrm{n}=4$ we have transitions from $\mathrm{m}=5,6,7$, etc. The corresponding energys will be: $54.24\left(\frac{1}{4^{2}}-\frac{1}{5^{2}}\right)=1.22 \mathrm{eV}$, the next one will be:
$54.24\left(\frac{1}{4^{2}}-\frac{1}{6^{2}}\right)=1.8833 \mathrm{eV}, 54.24\left(\frac{1}{4^{2}}-\frac{1}{7^{2}}\right)=2.28306 \mathrm{~V}$ and so on. So these are down to $\mathrm{n}=4$ from level $\mathrm{m}=6,7,8,9,10,11,12$ and 13 . The special line a similar analysis gives from $\mathrm{m}=4$ to $\mathrm{n}=3$.
2. 2 particles A and B, 3 states with energy $0, \epsilon$ and $3 \epsilon \mathbf{a}$) Classical

state	0	ϵ	3ϵ	energy
1	AB	-	-	0
2	-	AB	-	2ϵ
3	-	-	AB	6ϵ
4	A	B	-	ϵ
5	B	A	-	ϵ
6	A	-	B	3ϵ
7	B	-	A	3ϵ
8	-	A	B	4ϵ
9	-	B	A	4ϵ

b) Bosons

state	0	ϵ	3ϵ	energy
1	AA	-	-	0
2	-	AA	-	2ϵ
3	-	-	AA	6ϵ
4	A	A	-	ϵ
6	A	-	A	3ϵ
8	-	A	A	4ϵ

and $Z=1+e^{-\epsilon / \tau}+e^{-2 \epsilon / \tau}+e^{-3 \epsilon / \tau}+e^{-4 \epsilon / \tau}+e^{-6 \epsilon / \tau}$
c) Fermions

state	0	ϵ	3ϵ	energy	
4	A	A	-	ϵ	and $Z=e^{-\epsilon / \tau}+e^{-3 \epsilon / \tau}+e^{-4 \epsilon / \tau}$
6	A	-	A	3ϵ	
8	-	A	A	4ϵ	

3. $Z=1+e^{\frac{m B}{\tau}}+e^{-\frac{m B}{\tau}} \approx 1+1+\frac{m B}{\tau}+\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}+1-\frac{m B}{\tau}+\frac{1}{2}\left(\frac{m B}{\tau}\right)^{2}=3\left(1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$
$\left.F=-\tau \ln Z=-\tau\left[\ln 3+\ln \left(1+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)\right] \approx-\tau\left[\ln 3+\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)\right]$
$\left.\sigma=-\frac{\partial F}{\partial \tau} V=\ln 3-\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$. The decrease in entropy is $\left.\frac{1}{3}\left(\frac{m B}{\tau}\right)^{2}\right)$ and $A=\frac{1}{3}(m B)^{2}$
4. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in one dimesion is adequate)

$$
\begin{gathered}
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 M a^{2}} \quad \text { where } \quad n=1,2,3, \ldots \\
\psi_{m}(x)=\sqrt{\frac{2}{\sqrt{2} a}} \sin \frac{m \pi y}{\sqrt{2} a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 M 2 a^{2}} \quad \text { where } \quad m=1,2,3, \ldots
\end{gathered}
$$

In two dimensions the eigenfunctions and eigenenergys for the rectangular well are (Here an argument about separation of variables is needed)
$\Psi_{n, m}(x, y)=\psi_{n}(x) \cdot \psi_{m}(y)$ and eigenenergys $E_{n, m}=E_{n}+E_{m}$ where $n=1,2,3, .$. and $m=1,2,3, .$.
a) The eigenfunctions inside the rectangle

$$
\Psi_{n, m}(x, y)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \cdot \sqrt{\frac{2}{\sqrt{2} a}} \sin \frac{m \pi y}{\sqrt{2} a} \text { where } \quad n=1,2,3, . . \text { and } m=1,2,3, . .
$$

The eigenfunctions outside the rectangle $\Psi_{n, m}(x, y)=0$
b) The five lowest eigenenergies are
$E_{n, m}=\frac{\pi^{2} \hbar^{2}}{2 M a^{2}}\left(n^{2}+\frac{m^{2}}{2}\right), \quad$ where the 5 lowest are $\left(n^{2}+\frac{m^{2}}{2}\right)=1.5,3,4.5,5.5,6,8.5$ and 9.
c) The five lowest eigenenergys have degeneracys (not degenerate !) as follows:

$$
\begin{aligned}
& E_{1,1}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=1.5\right) \\
& E_{1,2}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=3\right) \\
& E_{2,1}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=4.5\right) \\
& E_{1,3}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=5.5\right) \\
& E_{2,2}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=6\right) \\
& E_{2,3}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=8.5\right) \\
& E_{1,4}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=9\right)
\end{aligned}
$$

5. A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$. The spin operator $S_{\hat{n}}$ is

$$
S_{\hat{n}}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & \cos \varphi-i \sin \varphi \\
\cos \varphi-i \sin \varphi & 0
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \\
e^{i \varphi} & 0
\end{array}\right)
$$

The eigenvalue equation is

$$
S_{\hat{n}} \chi=\lambda \chi \Leftrightarrow \frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \tag{1}\\
e^{i \varphi} & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

We find the eigenvalues from

$$
\left|\begin{array}{cc}
-\lambda & \frac{\hbar}{2} e^{-i \varphi} \\
\frac{\hbar}{2} e^{i \varphi} & -\lambda
\end{array}\right|=0 \Rightarrow \lambda= \pm \frac{\hbar}{2}
$$

(a) The spin state corresponding to $\lambda=+\hbar / 2$ must satisfy the eigenvalue equation Eq. (1), i.e.

$$
\chi_{\hat{n}+}=\binom{a}{b}=b\binom{e^{-i \varphi}}{1} \Rightarrow \chi_{\hat{n}+}=\frac{1}{\sqrt{2}}\binom{e^{-i \varphi}}{1}
$$

where the normalization condition $|a|^{2}+|b|^{2}=1$ was used in the last step. Other correct solutions can be found by a multiplication with an arbitrary phase factor $\exp (i \alpha)$.
(b) A general spin state can be written as $\chi=a \chi_{+}+b \chi_{-}$, where χ_{+}is spin up and χ_{-}is spin down in z-direction. For $\chi_{\hat{n}+}$ we find that the probability to measure spin up, i.e. $S_{z}=\hbar / 2$ is $|a|^{2}=\left|e^{-i \varphi} / \sqrt{2}\right|^{2}=1 / 2$, and that the probability to measure spin down, i.e. $S_{z}=-\hbar / 2$ is $|b|^{2}=|1 / \sqrt{2}|^{2}=1 / 2$.

