LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics and Statistical Physics MTF131

Examination date: 2007-09-01

1. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in one dimesion is adequate)

$$
\begin{gathered}
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 M a^{2}} \quad \text { where } \quad n=1,2,3, \ldots \\
\psi_{m}(x)=\sqrt{\frac{2}{\sqrt{2} a}} \sin \frac{m \pi y}{\sqrt{2} a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 M 2 a^{2}} \quad \text { where } \quad m=1,2,3, \ldots
\end{gathered}
$$

In two dimensions the eigenfunctions and eigenenergys for the rectangular well are (Here an argument about separation of variables is needed)
$\Psi_{n, m}(x, y)=\psi_{n}(x) \cdot \psi_{m}(y)$ and eigenenergys $E_{n, m}=E_{n}+E_{m}$ where $n=1,2,3, .$. and $m=1,2,3, .$.
a) The eigenfunctions inside the rectangle

$$
\Psi_{n, m}(x, y)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \cdot \sqrt{\frac{2}{\sqrt{2} a}} \sin \frac{m \pi y}{\sqrt{2} a} \text { where } \quad n=1,2,3, . . \text { and } m=1,2,3, . .
$$

The eigenfunctions outside the rectangle $\Psi_{n, m}(x, y)=0$
b) The five lowest eigenenergies are
$E_{n, m}=\frac{\pi^{2} \hbar^{2}}{2 M a^{2}}\left(n^{2}+\frac{m^{2}}{2}\right), \quad$ where the 5 lowest are $\left(n^{2}+\frac{m^{2}}{2}\right)=1.5,3,4.5,5.5,6,8.5$ and 9.
c) The five lowest eigenenergys have degeneracys (not degenerate!) as follows:

$$
\begin{aligned}
& E_{1,1}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=1.5\right) \\
& E_{1,2}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=3\right) \\
& E_{2,1}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=4.5\right) \\
& E_{1,3}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=5.5\right) \\
& E_{2,2}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=6\right) \\
& E_{2,3}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=8.5\right) \\
& E_{1,4}=\text { one state }\left(n^{2}+\frac{m^{2}}{2}=9\right)
\end{aligned}
$$

2. The pressure is given by $P=k_{B} T\left(\frac{\partial \ln Z}{\partial V}\right)_{T}=\frac{N k_{B} T}{V-b N}-\frac{a N^{2}}{V^{2}}$ which can be rewritten as $\left(P+\frac{a N^{2}}{V^{2}}\right)(V-b N)=N k_{B} T$. The internal energy is given by $U=k_{B} T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{V}=N\left(\frac{3 k_{B} T}{2}-\frac{a N}{V}\right)$
3. Count the states in a box of size L. After some steps one reaches at (eq 7 page 185 KK) $\tau_{F}=\left(3 \pi^{2} n\right)^{2 / 3} \frac{\hbar^{2}}{2 m}$ this gives $T_{F}=k_{B} \tau_{F}=5.0 \mathrm{~K}$ which much less than $T=0.5 \mathrm{~K}$ so the approximation of the Fermi-Dirac distribution function as a step function will be fairly good. Calculate U (along lines according to eq 27 page 189 KK) after some steps $C_{v}=\frac{1}{2} \pi^{2} N k_{B} T / T_{F}$ is reached. Evaluating the fermi contribution gives $C_{v}=0.49 N k_{B}=4.10 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$ at $T=0.5 \mathrm{~K}$.
4. The partition function is $Z_{\text {rot }}=\sum_{j=0}^{\infty}(2 j+1) e^{-j(j+1) \frac{\hbar^{2}}{2 L \tau}} \approx 1+3 e^{-\frac{\hbar^{2}}{I \tau}}=1+3 e^{-x}$ where only the two first terms are kept and where $x=\frac{\hbar^{2}}{I \tau} \gg 1$. For N identical molecules $Z_{\text {rot }}^{(N)}=\frac{1}{N!} Z_{\text {rot }}^{N}$.
And hence we get the free energy for the rotational degrees of freedom as $F_{\text {rot }}=-N \tau \ln Z_{\text {rot }}+\tau \ln N!=-N \tau \ln \left(1+3 e^{-x}\right)+\tau \ln N!\approx-3 N \tau e^{-x}+\tau \ln N!=$ $-3 N \tau e^{-\frac{\hbar^{2}}{I \tau}}+\tau \ln N!$. The entropy of the system is given by the following derivative $\sigma_{\text {rot }}=-\frac{\partial F}{\partial \tau} V=3 N\left(1+\frac{\hbar^{2}}{I \tau}\right) e^{-\frac{\hbar^{2}}{I \tau}}-\ln N!=3 N(1+x) e^{-x}+\ln N!$.
The specific heat we get from $\left(C_{v}\right)_{\text {rot }}=\tau \frac{\partial \sigma}{\partial \tau} V=3 N \frac{\hbar^{2}}{I}\left[\frac{\hbar^{2}}{I \tau^{2}}-\frac{1}{\tau}\right] e^{-\frac{\hbar^{2}}{I \tau}} 3 N\left[\left(\frac{\hbar^{2}}{I \tau}\right)^{2}-\frac{\hbar^{2}}{I \tau}\right] e^{-\frac{\hbar^{2}}{I \tau}} \approx 3 N\left[\left(\frac{\hbar^{2}}{I \tau}\right)^{2}\right] e^{-\frac{\hbar^{2}}{I \tau}}\left(=3 N x^{2} e^{-x}\right)$
5. Rewrite the wave function in terms of spherical harmonics:

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N(x y+z y) e^{-\alpha r}=N r^{2} e^{-\alpha r}\left(\frac{1}{i} \sqrt{\frac{2 \pi}{15}}\left(Y_{2,2}-Y_{2,-2}\right)+\frac{1}{i} \sqrt{\frac{2 \pi}{15}}\left(-Y_{2,1}-Y_{2,-1}\right)\right)
$$

As all the $Y_{l, m}$ have $l=2$ the probability to get $\mathbf{L}^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$ is one. For L_{z} we must first normalize the coefficients in front of the $Y_{l, m}$. The sum of the squares is $\frac{8 \pi}{15}$ and hence we get the following expression:

$$
\psi(\boldsymbol{r})=N r^{2} e^{-\alpha r} \sqrt{\frac{8 \pi}{15}}\left(\frac{1}{i} \sqrt{\frac{1}{4}}\left(Y_{2,2}-Y_{2,-2}\right)+\frac{1}{i} \sqrt{\frac{1}{4}}\left(-Y_{2,1}-Y_{2,-1}\right)\right)
$$

The probability to get $m=2$ is $\left|\sqrt{\frac{1}{4}}\right|^{2}=\frac{1}{4}$, for $m=1$ is $\left|\sqrt{\frac{1}{4}}\right|^{2}=\frac{1}{4}$, for $m=0$ is $=0$ for $m=-1$ is $\left|\sqrt{\frac{1}{4}}\right|^{2}=\frac{1}{4}$, and for $m=-2$ is $\left|\sqrt{\frac{1}{4}}\right|^{2}=\frac{1}{4}$
The expectation value $\left\langle L^{2}\right\rangle=6 \hbar^{2}$ and for $\left\langle L_{z}\right\rangle=2 \frac{1}{4}+1 \frac{1}{4}+0-1 \frac{1}{4}-2 \frac{1}{4}=0 \hbar$.

