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1. a

The spinor is not normalised and we need to do this first:

1 = χ∗χ =| A |2 (2 − 5i, 3 + i)

(

2 + 5i
3 − i

)

=| A |2 | 2 + 5i |2 | 3 − i |2 → A =
1√
39

Note an expectation value is always a real number, never a complex one! Even if you had taken
A to be a complex number like A = i√

39
it would not change the expectation value as the

expectation value below only involves | A |2.
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39
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h̄
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(
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39
h̄

< Sy >=
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39
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h̄
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(
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i 0
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3 − i

)

= −17

39
h̄

< Sz >=
1

39
(2 − 5i, 3 + i)

h̄
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1 0
0 −1
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3 − i

)

=
19

78
h̄

b

Measurement along the x direction means: S = (1, 0, 0) · (Sx, Sy, Sz) = Sx. The idea is to expand
the initial spinor χ into the eigenspinors of Sx. So we start to calculate the eigenvalues and
eigenspinors to Sx. The spin operator Sx is

Sx =
h̄

2

(

0 1
1 0

)

we find the eigenvalues from the following equation

Snχ = λχ⇔ h̄

2

(

0 1
1 0

)(

a
b

)

= λ

(

a
b

)

(1)

We find the eigenvalues from the equation
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∣
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= 0 ⇒ λ = ± h̄
2

The eigenspinors to Sx corresponding to the + h̄
2

we get from

h̄
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The two equations above are linearly dependent and one of them is

a = b⇔ let b = 1 and hence a = 1

This gives the unnormalised spinor

(

1
1

)

and after normalisation we have χx+ =
1√
2

(

1
1

)

The other eigenspinor χx− has to be orthogonal to χx+. An appropriate choice is:

χx− =
1√
2

(

1
−1

)

Now we can expand the initial spinor χ in these eigenspinors to Sx. the second eigenspinor you
can get from orthogonality to the first one.

χ =
1√
39

(

2 + 5i
3 − i

)

= b+χx+ + b−χx−

The coefficient b+ is given by

b+ = χ∗
x+χ =

1√
78

(1 1) ∗
(

2 + 5i
3 − i

)

=
1√
78

(2 + 5i+ 3 − i) =
1√
78

(5 + 4i)

A similar calculation gives b− :

b+ = χ∗
x+χ =

1√
78

(1 − 1) ∗
(

2 + 5i
3 − i

)

=
1√
78

(2 + 5i− 3 + i) =
1√
78

(−1 + 6i)

We may now check that | b+ |2 + | b− |2= 1

| b+ |2 + | b− |2= 1

78
(25 + 16 + 1 + 36) = 1 ok

The probability (to get + h̄
2
) is given by |b+|2.

|b+|2 =
1

78
(25 + 16) =

41

78
≈ 0.526

and (to get − h̄
2
) is given by |b−|2.

|b−|2 =
1

78
(1 + 36) =

37

78
≈ 0.474

You may make the following check for consistency:

< Sx >=

(

41

78
(
h̄

2
) +

37

78
(− h̄

2
)

)

=
1

39
h̄

The same result as in part a.
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2. The specific heat at low temperatures is given by

Cv = γT + AT 3 =
π2Nek

2
B

2ǫF
T +

12π4

5
NkB

(

T

ΘD

)3

where γT is the contribution from the electrons valid for temperatures from zero to a bit below
the Fermi temperature TF = 3.66 · 104K. The second term AT 3 is the contribution (Debye T 3

law) from the phonons valid for temperatures from zero to a bit below the Debye temperature
ΘD = 160K. At room temperature the specific heat is dominated by the phonons and given the
two different powers there has to be a low temperature Tl (above absolute zero) at which the two
contributions are equal.

The Fermi energy relates to the Fermi temperature by ǫF = kBTF . As each Sodium atom
contributes with one electron to the Fermi system the number of atoms N equals the number of
free electrons Ne. We arrive at the following equation for the temperature Tl.

π2Nek
2
B

2kBTF
Tl =

12π4

5
NkB

(

Tl

ΘD

)3

Which solves for

T 2
l =

5

24π2
· Θ3

D

TF
=

5

24π2

1603

3.66 · 104
= 2.3623 K2 and hence Tl ≈ 1.5 K.

Other numbers that might come in handy. Atomic weight m = 22.99u, molar weight 22.99
g/mole, density ρ = 971kgm−3. The density of atoms in Sodium
n = 971 ∗ 6.022 · 1023/0.02299 = 2.543 · 1028m−3.

3. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, z = r cos θ and hence zx = r2 cos θ sin θ(eiφ + e−iφ)/2 using the Euler relations)
the appropriate spherical harmonics can now be identified and we arrive at

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = N
r2

2

√

8π

15
(−Y2,1 + Y2,−1)e

−r/3a0 . (2)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 0, for m = 1h̄ is 1

2
, for m = 0h̄ is 0 for m = −1h̄ is 1

2
, and for

m = −2h̄ is 0. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is
one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (2) and 2 we find n = 3 this function has the correct exponential

and the correct power of r (r2) and hence R3,2(r) = 2
√

2
27

√
5

(

Z
3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note

that Y2,1 and Y2,−1 are normalised but the sum (−Y2,1 + Y2,−1) is not normalised. The sum has
to be changed to (− 1√

2
Y2,1 + 1√

2
Y2,−1) in order to be normalised. Note that R3,2(r) contains an

r2 term as also a e−r/3a0 term. The wave function can now be completed to the following
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normailzed wave function (note that we do not need to calculate the constant N as all separate
parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = R3,2(r)(−
1√
2
Y2,1 +

1√
2
Y2,−1)e

−r/3a0

From physics handbook page 292 you find

〈r〉 =
1

2

[

3n2 − l(l + 1)
]

(

a0

Z

)

=
1

2

[

3 32 − 2(2 + 1)
]

(

a0

1

)

=
21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this:

〈r〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2 |

(

− 1√
2
Y2,1 +

1√
2
Y2,−1

)

|2 e−2r/3a0 =

∫ ∞

0
dr r3 | R3,2(r) |2 e−2r/3a0 =

21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.

4. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y) − h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x) −

h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution.

To find the eigenfunctions we need to solve the Schrödinger equation which is (in the region
where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(

Ψ(−a
2
) = Ψ(a

2
) = 0

)

into
account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the
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condition
∫ a/2
−a/2 | Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives ka

2
= π

2
∗ (even− integer). The

solution is:

ψn(x) =

√

2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (3)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√

2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (4)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional and the
solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (5)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many has been to present a calculation with the following
boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is for these
boundary conditions:

ψn(x) =

√

2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (6)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√

2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (7)

ψn(x) =
√

2
a
sin(nπx

a
+ nπ

2
) =

√

2
a

(

sin(nπx
a

) · cos(nπ
2

) + cos(nπx
a

) · sin(nπ
2

)
)

. We see that we recover

the solution in eq (3), (4) and (5) as we let n run from 1 to ∞.

b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (3) and
(4) have a definite parity. The functions in (3) are odd whereas the functions in (4) are even. As
the eigenstates for the 2 dimensional system are formed from eq (5) ie products of functions that
are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2h̄2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (3) and (4) to identify the parity
as odd or even. This is difficult if you try with functions like eq (7) even though it is a correct
eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) odd * odd = even

5



E1,2 = E2,1 = two states (n2 +m2 = 5) odd * even = odd

E2,2 = one state (n2 +m2 = 8) even * even = even

E1,3 = E3,1 = two states (n2 +m2 = 10) odd * odd = even

So of the four states only one is even and three where odd.

5. As the temperature raises the ground state gets de populated and excited states get populated.
The ground state has all the ni = 0 and has an energy 3

2
h̄ω there is only one state with this

energy. The next exited state has one of the ni = 1 and the other two are equal to zero ((1,0,0)
or (0,1,0) or (0,0,1)) the degeneracy of this state is hence equal to 3 the energy of it is 5

2
h̄ω.

a) There is one state of the lower energy and three states with the higher energy. The
probability to find the oscillator in a state of energy is proportional to the Boltzmann
factor we arrive at the following equation. 1e−1,5h̄ω/kBT = 3e−2,5h̄ω/kBT and e1h̄ω/kBT = 3
which evaluates to T = 1h̄ω

kB ln 3
or if you prefer τ , τ = 1h̄ω

ln 3
, which is equally correct.

b) The partition sum is given by: Z =
∑∞

n1=0,n2=0,n3=0 e
−(n1+n2+n3+1.5)h̄ω/kBT =

∑∞
n=0 g(n)e−(n+1.5)h̄ω/kBT , where g(n) is the degeneracy of the energy levels and

n = n1 + n2 + n3. There are two ways to evaluate this sum. One simple and one more
elaborate. First we do the simple solution. The sum for Z can be done as a product of
three separate geometric sums. Z =

∑∞
n1=0,n2=0,n3=0 e

−(n1+n2+n3+1.5)h̄ω/kBT =
∑∞

n1=0 e
−(n1+0.5)h̄ω/kBT ·∑∞

n2=0 e
−(n2+0.5)h̄ω/kBT ·∑∞

n3=0 e
−(n3+0.5)h̄ω/kBT =

(

∑∞
n=0 e

−(n+0.5)h̄ω/kBT
)3

= e−3/2h̄ω/kBT
(

∑∞
n=0 e

−nh̄ω/kBT
)3

= e−3/2h̄ω/kBT
(

1
1−e−h̄ω/kBT

)3
=

(

1
e+h̄ω/2kBT −e−h̄ω/2kBT

)3
. With kBT = τ = 1h̄ω

ln 3
we get arrive at the following

Z =

(

1

e+
ln 3

2 − e−
ln 3

2

)3

=





1√
3 − 1√

3





3

The solution continues after the following alternative calculation for Z.

Now we turn our attention to the more complicated calculation for the partition function Z:

One can make a geometric construction in three dimensions as well g(n) will be the number
of points in the plane that cuts through the coordinates: ((n,0,0) or (0,n,0) or (0,0,n)). We
can set up the following table for the degeneracy g(n). The first values you get from
inspecting the different possibility’s for the nx, ny, nz.

n 0 1 2 3 4 5 . . . n

g(n) 1 3 6 10 15 21 . . . (n+1)(n+2)
2

∆ 1 2 3 4 5 6 7

The result for g(n) = (n+1)(n+2)
2

is reached by inspection. You can use the fact that the
degenerate values form a triangle with a base length of n+ 1 and a height in the range of n.
The lower line of the table is the difference between two consecutive g(n).

The sum we have to calculate is Z =
∑∞

n=0
(n+1)(n+2)

2
e−(n+1.5)h̄ω/kBT . This sum breaks down

into three separate geometric sums, one with pre factor n2 one with n and one with a
constant. Z = e−1.5h̄ω/kBT ∑∞

n=0(n
2/2 + 3n/2 + 1)e−nh̄ω/kBT .
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The standard geometric sum is given by 1 + x+ x2 + x3 + x4... = 1
1−x

and the next one is
x+ 2x2 + 3x3 + 4x4.. = x

(1−x)2
(you get this one by taking the derivative of the previous one

and multiplying with an appropriate factor of x, or you get it from Beta page 188). The
third sum with the n2 factor is reached in a similar way:
x+ 4x2 + 9x3 + 16x4.. = x

(1−x)2
+ 2x2

(1−x)3

(you get this one by taking the The first one you get by taking another derivative.

Z = e−1.5h̄ω/kBT
∞
∑

n=0

(n2/2 + 3n/2 + 1)e−nh̄ω/kBT

Z = e
− 3h̄ω

2kBT





1

1 − e−
h̄ω
τ

+
3e−

h̄ω
τ

2(1 − e−
h̄ω
τ )2

+
1e−

h̄ω
τ

2(1 − e−
h̄ω
τ )2

+
2e−

2h̄ω
τ

2(1 − e−
h̄ω
τ )3



 =

e
− 3h̄ω

2kBT





1

1 − e−
h̄ω
τ

+
2e−

h̄ω
τ

(1 − e−
h̄ω
τ )2

+
e−

2h̄ω
τ

(1 − e−
h̄ω
τ )3



 =

e
− 3h̄ω

2kBT





(1 − e−
h̄ω
τ )2

(1 − e−
h̄ω
τ )3

+
(1 − e−

h̄ω
τ )2e−

h̄ω
τ

(1 − e−
h̄ω
τ )3

+
e−

2h̄ω
τ

(1 − e−
h̄ω
τ )3



 =

e
− 3h̄ω

2kBT





1 − 2e−
h̄ω
τ + e−2 h̄ω

τ + 2e−
h̄ω
τ − 2e−2 h̄ω

τ + e−2 h̄ω
τ

(1 − e−
h̄ω
τ )3



 =

e
− 3h̄ω

2kBT

(

1

(1 − e−
h̄ω
τ )3

)

=

(

1

(e+
h̄ω
2τ − e−

h̄ω
2τ )3

)

=

With kBT = τ = 1h̄ω
ln 3

we arrive at the following:

Z =

(

1

(e+
ln 3

2 − e−
ln 3

2 )3

)

=





1√
3 − 1√

3





3

After these two alternative calculations for Z we may continue with the calculation of the
probability: (we may choose any of the two energies as their probabilities will be equal:
1e−1,5h̄ω/kBT = 3e−2,5h̄ω/kBT )

P = e−3h̄ω/2kBT/





1√
3 − 1√

3





3

= 3−3/2

(√
3 − 1√

3

)3

=

(

1√
3

)3 (√
3 − 1√

3

)3

=

(

1 − 1

3

)3

=
8

27
≈ 0.296

The probability to be in one of these energys is P = 8
27

≈ 0.296
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