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1. The general relation for the specific heat is Cv = τ
(

∂σ
∂τ

)

v

a: in case of the conduction electrons we have Cv = γτ these two relations combine to give
γτ = τ

(

∂σ
∂τ

)

v
leading to ∂σ

∂τ
= γ = constant. and hence integrating to σ ∝ τ+’new constant’

where the ’new constant’ is zero as the the entropy is zero at temperature absolute zero. If the
temperature increases from τ = 100K to 400 K the entropy σ will increase by a factor 4.

b: In the case of the electro magnetic field we have that the energy density is u ∝ τ 4

(Stefan–Boltzmann T 4 law) and hence we have for the specific heat Cv ∝ τ 3 (Note the similarity
to phonons at low temperature the Debye T 3 law). As in a) we arrive at ∂σ

∂τ
∝ τ 2 and hence

σ ∝ τ 3. If the temperature is raised from 500K to 1500K the entropy σ will increase by a factor
of (1500

500
)3 = 27 that is a factor of 27.

2. (a) ih̄ ∂2

∂t2
sinωt = ih̄ω ∂

∂t
cosωt = −ih̄ω2 sinωt YES

(b) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(c) −ih̄ ∂2

∂z2 (C1e
ikz + C2e

−ikz) = −ih̄ik ∂
∂z

(C1e
ikz

− C2e
−ikz) = −ih̄k2(C1e

ikz + C2e
−ikz) YES

(d) −
h̄
2

∂
∂z
Ce−3z = −

h̄
2
C(−3)e−3z

∝ ψ(z) YES

(e) C
2
(z2

−
∂2

∂z2 )ze
−

1

2
z2

=? This has to be done in some steps. Start by doing this derivative

first: −
∂2

∂z2ze
−

1

2
z2

= −
∂
∂z

(e−
1

2
z2

− z2e−
1

2
z2

) = −(−ze−
1

2
z2

− 2ze−
1

2
z2

+ z3e−
1

2
z2

) =

3ze−
1

2
z2

− z3e−
1

2
z2

.

Now you go back to the start: C
2
(z2

−
∂2

∂z2 )ze
−

1

2
z2

= C
2
(z3e−

1

2
z2

+ 3ze−
1

2
z2

− z3e−
1

2
z2

) =
C
2
(+3ze−

1

2
z2

) = ∝ ψ(z) YES

(f) C
2
(z2

−
∂2

∂z2 )e
−

1

2
z2

= C
2
(z2e−

1

2
z2

−
∂
∂z

(−ze−
1

2
z2

)) = C
2
(z2e−

1

2
z2

− (−e−
1

2
z2

+ z2e−
1

2
z2

)) =
C
2
e−

1

2
z2

∝ ψ(z) YES

3. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the
time-independent Schrödinger equation

−

h̄2

2m

d2u(x)

dx2
+ V (x)u(x) = Eu(x),

with V (x) zero everywhere. Thus, the eigenvalue equation reads

d2u(x)

dx2
+ k2u(x) = 0,

where k2 = 2mE/h̄2. The eigenfunctions are given by the plane waves eikx and e−ikx, or linear
combinations of these, as e.g. sin kx and cos kx.

(a) The wave function of the particle at t = 0 is given by

ψ(x, 0) = sin3 kx.
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This is not an eigenfunction in itself but it can be written as using the Euler relations

ψ(x, 0) =

(

eikx
− e−ikx

2i

)3

= −

1

8i

(

ei3kx
− 3eikx + 3e−ikx

− e−i3kx
)

= +
3

4
sin kx−

1

4
sin 3kx.

(1)
Thus, ψ(x, 0) can be written as a superposition the plane waves sin k1x and sin k2x, with
k1 = k and k2 = 3k

(b) The energy of a plane wave eikx is given by E = h̄2k2/2m. Thus, the energy of sin k1x is
E1 = h̄2k2/2m and the energy of sin k2x is E2 = h̄2k2

2/2m = 9h̄2k2/2m.

(c) The function u(x) = eikx is a solution to the the time-independent Schrödinger equation.
The corresponding solutions to the time-dependent Schrödinger equation are given by
u(x)T (t),with T (t) = e−iEt/h̄. Therefore, u(x)T (t) = ei(kx−Et/h̄). A sum of solutions of this
form is also a solution, since the Schrödinger equation is linear. This means that if ψ(x, 0)
is given by equation (1), then the time dependent solution is given by

ψ(x, t) = −

1

8i

[(

ei3kx
− e−i3kx

)

e−iE2t/h̄ + 3
(

−eikx + e−ikx
)

e−iE1t/h̄
]

=
3

4i
sin(kx)e−iE1t/h̄

−

1

4i
sin(3kx)e−iE2t/h̄ (2)

where

E1 =
h̄2k2

2m
and E2 =

9h̄2k2

2m
(3)

4. (a) Let the commutator act on a wave function Ψ(y) and py = −ih̄ d
dy

[y2, p2
y]Ψ(y) = −h̄2(y2 d2Ψ(y)

dy2 −
d2(y2Ψ(y))

dy2 ) = −h̄2
(

y2 d2Ψ(y)
dy2 − y2 d2Ψ(y)

dy2 − 4y dΨ(y)
dy

− 2Ψ(y)
)

=

+h̄22Ψ(y) + 4yh̄2 dΨ(y)
dy

=
(

+h̄22 + i4h̄ypy

)

Ψ(y) concluding for the commutator:

[y2, p2
y] = +2h̄2 + 4ih̄ypy = +2h̄2 + 4h̄2y d

dy
.

(b) The energy levels for a hydrogen like system are given by: En = −13.6Z2

n2 [eV], here we have
Z = 4 : ∆E = E(2s) − E(1s) = E2 −E1 = −13.54 · (16

22 −
16
12 ) = 13.54 · 16·3

4
= 162.48 eV

(c) The angular part of the wave function can be written as a spherical harmonic:

3 cos2 θ − 1 ∝ Y20

Which gives l = 2 och m = 0. The part depending on r (r2/a2
µ)e

−r/3aµ corresponding to the
principal quantum number n = 3 och l = 2 consistent with Y20.

5. The energies of the states are given by ǫj = (j + 1
2
)h̄ω. Note that we can treat the oscillators as

independent from each other. To find the fraction of oscillators in a particular state is the same
as to ask for the probability of a oscillator to be in that particular state. In order to find the
probabilities (fractions) we need to calculate the partition function for the system consisting of a

single oscillator Z =
∑

e−(j+ 1

2
)h̄ω/τ = e−

h̄ω
2τ
∑

∞

n=0 e
−nh̄ω/τ = e−

h̄ω
2τ

1
1−e−h̄ω/τ . Note the partition

function is a geometric sum. At the characteristic temperature given by τch = h̄ω the partition
function is Z = e−

1

2
1

1−e−1 = 1
e1/2

−e−1/2
.

The fraction of oscillators in the ground state (j = 0) is given by

f0 = e−ǫ0/τ

Z
= e−

1

2 (e1/2
− e−1/2) = (1 − e−1) = 0.632.

The next states (j = 1) fraction is given by f1 = e−ǫ1/τ

Z
= e−

3

2 (e1/2
− e−1/2) = (e−1

− e−2) = 0.233.

The next states (j = 2) fraction is given by

f2 = e−ǫ2/τ

Z
= e−

5

2 (e1/2
− e−1/2) = (e−2

− e−3) = 0.0855.
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