LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics and Statistical Physics

 F0018T / MTF131Examination date: 2007-12-21
Note solutions are more detailed compared to previous solutions, earlier than October 2007.

1. The general relation for the specific heat is $C_{v}=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{v}$
a: in case of the conduction electrons we have $C_{v}=\gamma \tau$ these two relations combine to give $\gamma \tau=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{v}$ leading to $\frac{\partial \sigma}{\partial \tau}=\gamma=$ constant. and hence integrating to $\sigma \propto \tau+$ 'new constant' where the 'new constant' is zero as the the entropy is zero at temperature absolute zero. If the temperature increases from $\tau=100 \mathrm{~K}$ to 400 K the entropy σ will increase by a factor 4 .
b: In the case of the electro magnetic field we have that the energy density is $u \propto \tau^{4}$
(Stefan-Boltzmann T^{4} law) and hence we have for the specific heat $C_{v} \propto \tau^{3}$ (Note the similarity to phonons at low temperature the Debye T^{3} law). As in a) we arrive at $\frac{\partial \sigma}{\partial \tau} \propto \tau^{2}$ and hence $\sigma \propto \tau^{3}$. If the temperature is raised from 500 K to 1500 K the entropy σ will increase by a factor of $\left(\frac{1500}{500}\right)^{3}=27$ that is a factor of $\mathbf{2 7}$.
2. (a) $i \hbar \frac{\partial^{2}}{\partial t^{2}} \sin \omega t=i \hbar \omega \frac{\partial}{\partial t} \cos \omega t=-i \hbar \omega^{2} \sin \omega t \quad$ YES
(b) $-i \hbar \frac{\partial}{\partial z} C\left(1+z^{2}\right)=-i \hbar C(0+2 z) \quad \mathrm{NO}$
(c) $-i \hbar \frac{\partial^{2}}{\partial z^{2}}\left(C_{1} e^{i k z}+C_{2} e^{-i k z}\right)=-i \hbar i k \frac{\partial}{\partial z}\left(C_{1} e^{i k z}-C_{2} e^{-i k z}\right)=-i \hbar k^{2}\left(C_{1} e^{i k z}+C_{2} e^{-i k z}\right) \quad$ YES
(d) $-\frac{\hbar}{2} \frac{\partial}{\partial z} C e^{-3 z}=-\frac{\hbar}{2} C(-3) e^{-3 z} \propto \psi(z) \quad$ YES
(e) $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) z e^{-\frac{1}{2} z^{2}}=$? This has to be done in some steps. Start by doing this derivative first: $-\frac{\partial^{2}}{\partial z^{2}} z e^{-\frac{1}{2} z^{2}}=-\frac{\partial}{\partial z}\left(e^{-\frac{1}{2} z^{2}}-z^{2} e^{-\frac{1}{2} z^{2}}\right)=-\left(-z e^{-\frac{1}{2} z^{2}}-2 z e^{-\frac{1}{2} z^{2}}+z^{3} e^{-\frac{1}{2} z^{2}}\right)=$ $3 z e^{-\frac{1}{2} z^{2}}-z^{3} e^{-\frac{1}{2} z^{2}}$.
Now you go back to the start: $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) z e^{-\frac{1}{2} z^{2}}=\frac{C}{2}\left(z^{3} e^{-\frac{1}{2} z^{2}}+3 z e^{-\frac{1}{2} z^{2}}-z^{3} e^{-\frac{1}{2} z^{2}}\right)=$ $\frac{C}{2}\left(+3 z e^{-\frac{1}{2} z^{2}}\right)=\propto \psi(z) \quad$ YES
(f) $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) e^{-\frac{1}{2} z^{2}}=\frac{C}{2}\left(z^{2} e^{-\frac{1}{2} z^{2}}-\frac{\partial}{\partial z}\left(-z e^{-\frac{1}{2} z^{2}}\right)\right)=\frac{C}{2}\left(z^{2} e^{-\frac{1}{2} z^{2}}-\left(-e^{-\frac{1}{2} z^{2}}+z^{2} e^{-\frac{1}{2} z^{2}}\right)\right)=$ $\frac{C}{2} e^{-\frac{1}{2} z^{2}} \propto \psi(z) \quad$ YES
3. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V(x) u(x)=E u(x),
$$

with $V(x)$ zero everywhere. Thus, the eigenvalue equation reads

$$
\frac{d^{2} u(x)}{d x^{2}}+k^{2} u(x)=0
$$

where $k^{2}=2 m E / \hbar^{2}$. The eigenfunctions are given by the plane waves $e^{i k x}$ and $e^{-i k x}$, or linear combinations of these, as e.g. $\sin k x$ and $\cos k x$.
(a) The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\sin ^{3} k x .
$$

This is not an eigenfunction in itself but it can be written as using the Euler relations

$$
\begin{equation*}
\psi(x, 0)=\left(\frac{e^{i k x}-e^{-i k x}}{2 i}\right)^{3}=-\frac{1}{8 i}\left(e^{i 3 k x}-3 e^{i k x}+3 e^{-i k x}-e^{-i 3 k x}\right)=+\frac{3}{4} \sin k x-\frac{1}{4} \sin 3 k x . \tag{1}
\end{equation*}
$$

Thus, $\psi(x, 0)$ can be written as a superposition the plane waves $\sin k_{1} x$ and $\sin k_{2} x$, with $k_{1}=k$ and $k_{2}=3 k$
(b) The energy of a plane wave $e^{i k x}$ is given by $E=\hbar^{2} k^{2} / 2 m$. Thus, the energy of $\sin k_{1} x$ is $E_{1}=\hbar^{2} k^{2} / 2 m$ and the energy of $\sin k_{2} x$ is $E_{2}=\hbar^{2} k_{2}^{2} / 2 m=9 \hbar^{2} k^{2} / 2 m$.
(c) The function $u(x)=e^{i k x}$ is a solution to the the time-independent Schrödinger equation. The corresponding solutions to the time-dependent Schrödinger equation are given by $u(x) T(t)$, with $T(t)=e^{-i E t / \hbar}$. Therefore, $u(x) T(t)=e^{i(k x-E t / \hbar)}$. A sum of solutions of this form is also a solution, since the Schrödinger equation is linear. This means that if $\psi(x, 0)$ is given by equation (1), then the time dependent solution is given by

$$
\begin{align*}
\psi(x, t) & =-\frac{1}{8 i}\left[\left(e^{i 3 k x}-e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+3\left(-e^{i k x}+e^{-i k x}\right) e^{-i E_{1} t / \hbar}\right] \\
& =\frac{3}{4 i} \sin (k x) e^{-i E_{1} t / \hbar}-\frac{1}{4 i} \sin (3 k x) e^{-i E_{2} t / \hbar} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
E_{1}=\frac{\hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{2}=\frac{9 \hbar^{2} k^{2}}{2 m} \tag{3}
\end{equation*}
$$

4. (a) Let the commutator act on a wave function $\Psi(y)$ and $p_{y}=-i \hbar \frac{d}{d y}$
$\left[y^{2}, p_{y}^{2}\right] \Psi(y)=-\hbar^{2}\left(y^{2} \frac{d^{2} \Psi(y)}{d y^{2}}-\frac{d^{2}\left(y^{2} \Psi(y)\right)}{d y^{2}}\right)=-\hbar^{2}\left(y^{2} \frac{d^{2} \Psi(y)}{d y^{2}}-y^{2} \frac{d^{2} \Psi(y)}{d y^{2}}-4 y \frac{d \Psi(y)}{d y}-2 \Psi(y)\right)=$
$+\hbar^{2} 2 \Psi(y)+4 y \hbar^{2} \frac{d \Psi(y)}{d y}=\left(+\hbar^{2} 2+i 4 \hbar y p_{y}\right) \Psi(y)$ concluding for the commutator:
$\left[y^{2}, p_{y}^{2}\right]=+2 \hbar^{2}+4 i \hbar y p_{y}=+2 \hbar^{2}+4 \hbar^{2} y \frac{d}{d y}$.
(b) The energy levels for a hydrogen like system are given by: $E_{n}=-13.6 \frac{Z^{2}}{n^{2}}[\mathrm{eV}]$, here we have $Z=4: \Delta E=E(2 s)-E(1 s)=E_{2}-E_{1}=-13.54 \cdot\left(\frac{16}{2^{2}}-\frac{16}{1^{2}}\right)=13.54 \cdot \frac{16 \cdot 3}{4}=162.48 \mathrm{eV}$
(c) The angular part of the wave function can be written as a spherical harmonic:

$$
3 \cos ^{2} \theta-1 \propto Y_{20}
$$

Which gives $l=2$ och $m=0$. The part depending on $r\left(r^{2} / a_{\mu}^{2}\right) e^{-r / 3 a_{\mu}}$ corresponding to the principal quantum number $n=3$ och $l=2$ consistent with Y_{20}.
5. The energies of the states are given by $\epsilon_{j}=\left(j+\frac{1}{2}\right) \hbar \omega$. Note that we can treat the oscillators as independent from each other. To find the fraction of oscillators in a particular state is the same as to ask for the probability of a oscillator to be in that particular state. In order to find the probabilities (fractions) we need to calculate the partition function for the system consisting of a single oscillator $Z=\sum e^{-\left(j+\frac{1}{2}\right) \hbar \omega / \tau}=e^{-\frac{\hbar \omega}{2 \tau}} \sum_{n=0}^{\infty} e^{-n \hbar \omega / \tau}=e^{-\frac{\hbar \omega}{2 \tau}} \frac{1}{1-e^{-\hbar \omega / \tau}}$. Note the partition function is a geometric sum. At the characteristic temperature given by $\tau_{c h}=\hbar \omega$ the partition function is $Z=e^{-\frac{1}{2}} \frac{1}{1-e^{-1}}=\frac{1}{e^{1 / 2}-e^{-1 / 2}}$.
The fraction of oscillators in the ground state $(j=0)$ is given by
$f_{0}=\frac{e^{-\epsilon_{0} / \tau}}{Z}=e^{-\frac{1}{2}}\left(e^{1 / 2}-e^{-1 / 2}\right)=\left(1-e^{-1}\right)=0.632$.
The next states $(j=1)$ fraction is given by $f_{1}=\frac{e^{-\epsilon_{1} / \tau}}{Z}=e^{-\frac{3}{2}}\left(e^{1 / 2}-e^{-1 / 2}\right)=\left(e^{-1}-e^{-2}\right)=0.233$.
The next states $(j=2)$ fraction is given by
$f_{2}=\frac{e^{-\epsilon_{2} / \tau}}{Z}=e^{-\frac{5}{2}}\left(e^{1 / 2}-e^{-1 / 2}\right)=\left(e^{-2}-e^{-3}\right)=0.0855$.

