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1. A 2p state has quantum numbers n = 2 and l = 1 (see textbook for explaination for notation of
l quantum numbers as ”s, p, d and f”). The relevant radial part of the wave function is:

R21(r) = 1√
3

(

Z
2a0

)3/2
Zr
a0

e−Zr/2a0 . The probabillity to find the particle in the range r och r + dr is

given by: P (r)dr = R21(r)
2r2dr and hence P (r) = R21(r)

2r2 = konstant r4e−Zr/a0 .

The extreme is where the derivative is zero.
dP (r)

dr
= 4r3e−Zr/a0 − r4 Z

a0

e−Zr/a0 = r3(4 − r Z
a0

)e−Zr/a0 = 0. The maximum appears at r = 4a0. It
is a maximum as P (0) = P (∞) = 0 and P (r) ≥ 0 and hence a maximum. You can also study
the sign change of the derivative to the left and right of the extremum or you can investigate the
sign of the second derivative at the extreme.

If there are no external electric or magnetic fields the energy of the hydrogenic levels depends
only on the principal quantum number n and not on the angular momentum quantum numbers l
and ml.

For this case the following states have the same energy:
I) 3s with ml = 0, 3p with ml = 1, 3p with ml = −1, 3p with ml = 0.
II) 4d with ml = 1, 4p with ml = 0, 4p with ml = −1.
III) 5d with ml = 1, 5p with ml = −1, 5s with ml = 0.

2. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in
one dimesion is adequate). The width of the well is a.

ψn(x) =

√

2

a
sin

nπx

a
and the eigenenergys are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about
separation of variables is needed to justify the structure of the solution)

Ψn,m,l(x, y) = ψn(x) · ψm(y) · ψl(z) and eigenenergys En,m = En +Em +El where the indecies are
n = 1, 2, 3, .. , m = 1, 2, 3, .. and l = 1, 2, 3, ..

a) The eigenfunctions inside the box are (note the sidelength is a/2 for one of the sides)

Ψn,m,l(x, y, z) =

√

2

a
sin

nπx

a
·
√

2

a
sin

mπy

a
·
√

4

a
sin

lπ2y

a
where n = 1, 2, 3, .. ,m = 1, 2, 3, .. and l = 1, 2, 3,

The eigenfunctions outside the box are Ψn,m,l(x, y, z) = 0
b) The six lowest eigenenergys are (note the 4 associated to the quantum number l this is due to
that the length of the box along the z direction is only half of the other two that are of equal
length):

En,m,l =
π2h̄2

2ma2
(n2 +m2 + 4l2), where the 6 lowest are (n2 +m2 + 4l2) = 6, 9, 12, 14, 18, and 21.

c) The six lowest eigenenergys have degeneracys (different ways to choose n,m, l to form the
same energy) (either one, two or four) as follows:
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E1,1,1 = one state (n2 +m2 + 4l2 = 6)

E1,2,1 = E2,1,1 = two states (n2 +m2 + 4l2 = 9)

E2,2,1 = one state (n2 +m2 + 4l2 = 12)

E1,3,1 = E3,1,1 = two states (n2 +m2 + 4l2 = 14)

E2,3,1 = E3,2,1 = two states (n2 +m2 + 4l2 = 17)

E1,1,2 = one state (n2 +m2 + 4l2 = 18)

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a
symmetry operation, ie some of these states are accidentally degenerated. These four can be
grouped in the following way.

E1,2,2 = E2,1,2 = two states (n2 +m2 + 4l2 = 21)

E1,4,1 = E4,1,1 = two states (n2 +m2 + 4l2 = 21)

3. The overall strategy is as follows. The specific heat we get from the entropy which we get from
the free energy and to reach the free energy we need to calculate the partition function.

The partition function of the rotor is (approximation for the low temperature limit, in this limit
the rotor will spend most of its time in the ground state and litle time in the lowest excited state
and negligable time in higher excited states)

Zrot =
∑∞

j=0(2j + 1)e−j(j+1) h̄
2

2Iτ ≈ 1 + 3e−
h̄
2

Iτ = 1 + 3e−x where x = h̄2

Iτ
>> 1 in the low

temperature limit. For N identical molecules Z
(N)

rot = 1
N !
ZN

rot, and hence the free energy is
Frot = −Nτ lnZrot + τ lnN ! = −Nτ ln(1 + 3e−x) + τ lnN ! ≈ −3Nτe−x + τ lnN ! =

−3Nτe−
h̄
2

Iτ + τ lnN !. The entropy is: σrot = −(∂F
∂τ

)v ≈
3N(1 + x)e−x + lnN ! = 3N(1 + h̄2

Iτ
)e−

h̄
2

Iτ + lnN ! and the specific heat in the low temperature

limit is: (Cv)rot = τ(∂σ
∂τ

)v ≈ 3Nx2e−x = 3N
(

h̄2

Iτ

)2
e−

h̄
2

Iτ .

An alternative route is as follows. You can also calculate the inner energy

U = −τ 2( ∂
∂τ

F
τ
)v,N = 3N

(

h̄2

Iτ

)

e−
h̄
2

Iτ . From this you reach the specific heat as well.

4. Z = 1 + e
mB

τ + e−
mB

τ ≈ 1 + 1 + mB
τ

+ 1
2

(

mB
τ

)2
+ 1 − mB

τ
+ 1

2

(

mB
τ

)2
= 3(1 + 1

3

(

mB
τ

)2
)

F = −τ lnZ = −τ
[

ln 3 + ln(1 + 1
3

(

mB
τ

)2
)
]

≈ −τ
[

ln 3 + 1
3

(
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τ

)2
)
]

σ = −∂F
∂τ V

= ln 3 − 1
3

(

mB
τ

)2
). The decrease in entropy is 1

3

(

mB
τ

)2
) and A = 1

3
(mB)2

5. (a) 〈H〉 = 1
2
0.27 + 1

4
1.08 + 3

16
3.65 + 1

16
4.06 = 1.343125 ≈ 1.34eV.

Uncertainty is defined by: 〈∆H〉 =
√

〈H2〉 − 〈H〉2
〈H2〉 = 1

2
(0.27)2 + 1

4
(1.08)2 + 3

16
(3.65)2 + 1

16
(4.06)2 = 3.85624375 (eV)2.

〈∆H〉 =
√

3.85624375− 1.3431252 = 1.432571 ≈ 1.43eV

(b) The expression is not unique as we only know the probabillities which are the squares of
the coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabillities are important
thats why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) + 1

2
ψ2(z) +

√
3

4
ψ3(z) + 1

4
ψ4(z).

Another is: Ψ(z) = 1√
2
ψ1(z) − 1

2
ψ2(z) +

√
3

4
ψ3(z) − 1

4
ψ4(z).
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