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1. (a) To show that ψ(ξ) = ξeξ2/2 solves the differential equation put it in! The first derivative
and second derivatives are:

dψ(ξ)

dξ
= eξ2/2 + ξ2eξ2/2 and

d2ψ(ξ)

dξ2
= ξeξ2/2 + 2ξeξ2/2 + ξ3eξ2/2 = 3ξeξ2/2 + ξ3eξ2/2

Now evaluate the following:

d2ψ(ξ)

dξ2
+ (λ− ξ2)ψ(ξ) = (λ+ 3)ξeξ2/2 + ξ3eξ2/2

− ξ3eξ2/2 = (λ+ 3)ξeξ2/2

If λ = −3 the desired result is reached.

(b) No, the suggested solutions diverges and cannot be normalized. Therefore it does not
describe a particle.

2. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in

terms of eigenfunctions. The eigenfunctions are (PH) ψ(x) =
√

2
a
sin(nπx

a
). We can directly

conclude that the given wave function consists of n = 1 and n = 5 functions, we can write:

ψ(x, 0) =
A
√

2
√

2a
sin

(

πx

a

)

+

√

2
√

2 · 5a
sin

(

5πx

a

)

=
A
√

2
ψ1(x, 0) +

1
√

10
ψ5(x, 0)

As both eigenfunctions are orthonormal the normalisation integral reduces to A2

2
+ 1

10
= 1

and hence A =
√

18
10

=
√

9
5

= 3√
5

(b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only

possible outcome of an energy meassurement are E1 = h̄2π2

2ma2 with probability A2

2
= 0.9 and

E5 = h̄2π2

2ma2 25 with probability 1 - 0.9 = 0.1 . The average energy is given by

< E >= 0.9E1 + 0.1E5 = h̄2π2

2ma2 (0.9 + 0.1 · 25) = 3.4 · h̄2π2

2ma2 = 1.7 ·
h̄2π2

ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞

n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√

9

10
ψ1(x, 0)e−i h̄π2t

2ma2 +
1

√

10
ψ5(x, 0)e−i 25h̄π2t

2ma2

3. a) The partition sum is given by: Z =
∑∞

n1=0,n2=0 e
−(n1+n2+1.0)h̄ω/kBT =

∑∞
n=0 g(n)e−(n+1.0)h̄ω/kBT , where g(n) is the degeneracy of the energy levels and n = n1 + n2.

There are two ways to evaluate this sum. One simple and one more elaborate. Only the
simple solution is presented here. The sum for Z can be done as a product of two separate
independent geometric sums.

Z =
∑∞

n1=0,n2=0 e
−(n1+n2+1.0)h̄ω/kBT =

∑∞
n1=0 e

−(n1+0.5)h̄ω/kBT
·
∑∞

n2=0 e
−(n2+0.5)h̄ω/kBT =

(

∑∞
n=0 e

−(n+0.5)h̄ω/kBT
)2

= e−h̄ω/kBT
(

∑∞
n=0 e

−nh̄ω/kBT
)2

= e−h̄ω/kBT
(

1
1−e−h̄ω/kBT

)2
= and we

arrive at the following for the partition function Z:

Z =
(

1

e+h̄ω/2kBT − e−h̄ω/2kBT

)2

= or = e−h̄ω/kBT
(

1

1 − e−h̄ω/kBT

)2

.
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b) There is one state of the lower energy and two states with the next higher energy. The
probability to find the oscillator in a state of energy is proportional to the Boltzmann
factor, we arrive at the following equation. 1e−1,0h̄ω/kBT = 2e−2,0h̄ω/kBT and e1h̄ω/kBT = 2
which evaluates to T = 1h̄ω

kB ln 2
or if you prefer τ , τ = 1h̄ω

ln 2
, which is equally correct.

c) The partition sum at this specific temperature is given by: (kBT = τ = 1h̄ω
ln 2

) we arrive at
the following

Z =

(

1

e+
ln 2

2 − e−
ln 2

2

)2

=





1
√

2 −
1√
2





2

We continue with the calculation of the probability: (we may choose any of the two
energies as their probabilities will be equal at the temperature in question:
(1e−1,0h̄ω/kBT = 2e−2,0h̄ω/kBT )

P = e−h̄ω/kBT/





1
√

2 −
1√
2





2

= 2−1

(

√

2 −
1
√

2

)2

=

(

1
√

2

)2 (
√

2 −
1
√

2

)2

=

(

1 −
1

2

)2

=
1

4
= 0.25

The probability to be in a state of one of these energys is P = 8
27

= 0.25

4. At the beginning the entropy in part 1 and 2 is given by σ1,2 = N1,2

[

ln
(

nQ

n1,2

)

+ 5
2

]

and after

mixing it is given by (same temperature): σe = Ne

[

ln
(

nQ

ne

)

+ 5
2

]

.

The change of entropy is (increase):

∆σ = σe − σ1 − σ2 = 2N
[

ln
(

nQ3V

2N

)

+ 5
2

]

−N
[

ln
(

nQ2V

N

)

+ 5
2

]

−N
[

ln
(

nQV

N

)

+ 5
2

]

=

2N ln
(

nQ3V

2N

)

−N ln
(

nQ2V

N

)

−N ln
(

nQV

N

)

=
2N lnnQ −N lnnQ −N lnnQ + 2N ln 3V −N ln 2V −N lnV − 2N ln 2N +N lnN +N lnN =

N
(

ln(9V 2 1
2V

1
V

) − ln(4N2N−1N−1)
)

= N ln(322−3V 0N0) = N ln(9
8
) = NkB ln(9

8
)

5. a) The eigenfunctions of the infinite square well in one dimension are (Here a solution of the
S.E. in one dimesion is adequate)

ψn(x) =

√

2

L
sin

nπx

L
and the eigenenergys are En =

n2π2h̄2

2mL2
where n = 1, 2, 3, ...

The five lowest one particle energies are: 12π2h̄2

2mL2 , 22π2h̄2

2mL2 , 32π2h̄2

2mL2 , 42π2h̄2

2mL2 and 52π2h̄2

2mL2 .

b) The many particle Hamiltonian commutes with the particle index exchange operator.
Therefore also the solutions are also eigenfunctions to this operator. They can have eigenvalue
+1 for bosons and -1 for fermions.
The eigenfunctions inside the well for two noninteracting and integer spin particles (=bosons).
Start the construction with the products:

ψn,m(x1, x2) =

√

2

L
sin

nπx1

L
·

√

2

L
sin

mπx2

L
where n = 1, 2, 3, .. and m = 1, 2, 3, ..

where index n and x1 is for one particle and m and x2 for the other. The above function is not
en eigenfunction of the particle index exchange operator but the following combination is.

Ψn,m(x1, x2) =
1
√

2
(ψn,m(x1, x2) + ψn,m(x2, x1))
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c) The fermion case. The eigenvalue is -1. The construction is similar but there is a sign change.

Ψn,m(x1, x2) =
1
√

2
(ψn,m(x1, x2) − ψn,m(x2, x1))
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