
LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Solution to written exam in Quantum Physics and Statistical Physics
F0018T / MTF131
Examination date: 2008-12-19
Note solutions are more detailed compared to previous solutions, earlier than October 2007.

1. Same as problem 4.4 in Bransden & Joachain. In the region where the potential is zero (x < 0)
the solutions are of the travelling wave form eikx and e−ikx, where k2 = 2mE/h̄2. A plane wave
ψ(x) = Aei(kx−ωt) describes a particle moving from x = −∞ towards x = ∞. The probability
current associated with this plane wave is
j = h̄

2mi
| A |2 (e−ikx ∂

∂x
e+ikx − e+ikx ∂

∂x
e−ikx) =| A |2 h̄

m
k =| A |2 v

A plane wave ψ(x) = Bei(−kx−ωt) describes a particle moving the opposite direction from x = ∞
towards x = −∞. The probability current associated with this plane wave is
j = h̄

2mi
| B |2 (e+ikx ∂

∂x
e−ikx − e−ikx ∂

∂x
e+ikx) = − | B |2 h̄

m
k = − | B |2 v

(a) Solution for the region x > 0 where the potential is V0 = 10.0eV. The potential step is
larger than the kinetic energy 5eV of the incident beam. The particle may therefore not
enter this region classically. It will be totally reflected. In quantum mechanics we perform
the following calculation: The two solutions for the two regions are:

Ψ(x) =

{
Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceκx +De−κx for x > 0 where κ2 = 2m(V0 − E)/h̄2

whe can put C = 0 as this part of the solution would diverge, and is hence not physical, as
x approaches ∞. At x = 0 both the wavefunction and its derivative have to be continous
functions. The derivative is:

∂Ψ(x)

∂x
=

{
Aikeikx −Bike−ikx

−Dκe−κx

At x = 0 we arrive at the following two equations:

{
A+B = D

iAk − iBk = −Dκ solving for





D
A

= 2k
k+κ

B
A

= k−iκ
k+iκ

solving for





D
A

= 2

1+i
√

V0/E−1

B
A

=
1−i
√

V0/E−1

1+i
√

V0/E−1

We can now calculate the coefficient of reflection, R The coefficients represent the following
amplitudes: A is the incident beam, B is the reflected beam and C is the transmitted
beam. The associated probability currents are denoted jA, jB and jC . Conservation yealds
jA = jB + jC . Hence we can define the coefficient of reflection as the fraction of reflected
flux R = |jB |

|jA| and the coefficient of transmission as T = |jC |
|jA|

{
R = |jB |

|jA| = B2k
A2k

= 1

This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Immediately follows that T = 0 as the currents have to be conserved.
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(b) Solution for the region x > 0 where the potential is V0 = 10.0eV. The potential step is
smaller than the kinetic energy 15eV of the incident beam. The particle may therefore
enter this region classically. It will however lose some of its kinetic energy. In quantum
mechanics there is a probability for the wave to be reflected as well. The two solutions for
the two regions are:

Ψ(x) =

{
Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceik′x +De−ik′x for x > 0 where k′2 = 2m(E − V0)/h̄
2

we can put D = 0 as there cannot be an incident beam from x = ∞. At x = 0 both the
wave function and its derivative have to be continuous functions. The derivative is:

∂Ψ(x)

∂x
=

{
Aikeikx −Bike−ikx

Cik′eik′x

At x = 0 we arrive at the following two equations:

{
A+B = C

Ak −Bk = Ck′
solving for





C
A

= 2k
k+k′

B
A

= k−k′
k+k′

solving for





C
A

= 2
√

E√
E+

√
E−V0

B
A

=
√

E−√E−V0√
E+

√
E−V0

The coefficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C is the transmitted beam. The associated probability currents are
denoted jA, jB and jC . Conservation yealds jA = jB + jC . Hence we can define the
coefficient of reflection as the fraction of reflected flux R = |jB |

|jA| and the coefficient of

transmission as T = |jC |
|jA|





R = |jB |
|jA| = B2k

A2k
=

(
B
A

)2
=

(√
E−√E−V0√
E+

√
E−V0

)2
=

(√
15−√5√
15+

√
5

)2
= 0.07180

T = |jC |
|jA| = C2k′

A2k
=

(
C
A

)2 √E−V0√
E

=
(

2
√

E√
E+

√
E−V0

)2 √
E−V0√

E
=

(
2
√

15√
15+

√
5

)2 √
5√
15

= 0.9282

(c) This case can be seen as either the limiting case of a) or b). Both give the same answer
R = 1 and T = 0.

2. A measurement of the spin in the direction n̂ = sin(π
4
)êy + cos(π

4
)êz = 1√

2
êy + 1√

2
êz. The spin

operator Sn̂ is

Sn̂ =
1√
2
Sy +

1√
2
Sz =

h̄

2
√

2

(
1 −i
i −1

)

The eigenvalue equation is

Sn̂χ = λχ⇔ h̄

2
√

2

(
1 −i
i −1

) (
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from
∣∣∣∣∣

h̄
2
√

2
− λ −i h̄

2
√

2

i h̄
2
√

2
− h̄

2
√

2
− λ

∣∣∣∣∣ = 0 ⇒ λ = ± h̄
2

The eigenspinors to Sn corresponding to the + h̄
2

we get from

h̄

2
√

2

(
1 −i
i −1

) (
a
b

)
= +

h̄

2

(
a
b

)
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a√
2
− ib√

2
= a⇔ a(

√
2− 1) = −ib let b = 1 and hence a =

−i√
2− 1

This gives the unnormalised spinor
( − i√

2−1

1

)
and after normalisation we have χn̂+ =

1√
2(2 +

√
2)

( − i√
2−1

1

)

Now we can expand the initial eigenspinor χ+ in these eigenspinors to Sn, the second
eigenspinor you can get from orthogonality to the first one.

(
1
0

)
= A

1√
2(2 +

√
2)

( − i√
2−1

1

)
+B

1√
2(2 +

√
2)

(
1
−i√
2−1

)

The coefficients are subjected to the normalisation condition |A|2 + |B|2 = 1. The coefficient A
can be obtained by multiplying the previous equation from the left with χ∗n̂+.

A =
1√

2(2 +
√

2)

(
− i√

2− 1
1

)
∗

(
1
0

)
= − i√

2− 1
· 1√

2(2 +
√

2)

The probability (to get + h̄
2
) is given by |A|2.

|A|2 =
3 + 2

√
2

4 + 2
√

2
= 0.8535533906

and (to get − h̄
2
) for |B|2.

|B|2 =
1

4 + 2
√

2
= 0.1464466094

To find the probability for + h̄
2

in the z-direction for the up state of Sn express the state in the
eigenspinors to Sz.

χn̂+ =
1√

2(2 +
√

2)

( − i√
2−1

1

)
= − i√

2− 1
· 1√

2(2 +
√

2)

(
1
0

)
+

1√
2(2 +

√
2)

(
0
1

)

The probability is given by the square of the coefficient:

∣∣∣∣∣∣
− i√

2− 1
· 1√

2(2 +
√

2)

∣∣∣∣∣∣

2

= 0.8535533906

3. (a) 〈H〉 = 1
2
0.31 + 2

12
0.97 + 1

12
1.81 + 3

16
3.35 + 1

16
4.08 = 1.350625 ≈ 1.35eV.

Uncertainty is defined by: 〈∆H〉 =
√
〈H2〉 − 〈H〉2

〈H2〉 = 〈H〉 = 1
2
(0.31)2 + 2

12
(0.97)2 + 1

12
(1.81)2 + 3

16
(3.35)2 + 1

16
(4.08)2 = 3.622494 ≈ 3.62eV.

〈∆H〉 =
√

3.622494− 1.3506252 = 1.341009 ≈ 1.34eV

(b) The expression is not unique as we only know the probabilities which are the squares of the
coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabilities are important thats
why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) +

√
2
12
ψ2(z) + 1√

12
ψ3(z) +

√
3

4
ψ4(z) + 1

4
ψ5(z).

Another is: Ψ(z) = 1√
2
ψ1(z)−

√
2
12
ψ2(z) + 1√

12
ψ3(z) +

√
3

4
ψ4(z) + 1

4
ψ5(z).
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(c) By a factor of 4. (All eigenvalues change by a factor of 4)

4. The line that is special (due to intensity) is λ = 470.22nm with intensity 200. The Helium ion
has Z = 2 and hence energys En = −54.24

n2 eV. Try to find a start of the series. The energy of

λ = 658.30nm is E = hν = hc
λ

= 6.626·10−34·2.9979·108

6.5830·10−7·1.6022·10−19 = 1.8833eV A similar calculation gives for
the other lines in the series: 2.28306, 2.54250, 2.72037, 2.84760, 2.94174, 3.01333, 3.06905 and
for the special line 2.63667eV

As Balmer series in Hydrogen is for transitions down to level n=2 we have to go higher up for
the Helium ion. If we try n=4 we have transitions from m=5, 6, 7, etc. The corresponding
energys will be: 54.24( 1

42 − 1
52 )=1.22eV, the next one will be: 54.24( 1

42 − 1
62 )=1.8833eV,

54.24( 1
42 − 1

72 )=2.28306V and so on. So these are down to n=4 from level m=6, 7, 8, 9, 10, 11,
12 and 13. The special line a similar analysis gives from m=4 to n=3.

5. Följande antal tillst̊and finns för hemoglogin med 0, 1, 2, 3 eller 4 syremolekyler: 1, 4, 6, 4 och 1.
Kemiska aktiviteten för O2 är λ = eµ/τ , ε är energin för en bunden O2. Stora tillst̊ands summan
är Z = 1 + 4λe−ε/τ + 6λ2e−2ε/τ + 4λ3e−3ε/τ + λ4e−4ε/τ . sannolikheten för 1 syremolekyl
P (1) = 4λe−ε/τ

Z
och sannolikheten för 4 syremolekyler P (4) = λ4e−4ε/τ

Z
. Figuren över P (1) kommer

P (1) att uppvisa ett maximum vid n̊agot λ och figuren över P (4) kommer P (4) att g̊a fr̊an 0
mot 1 med ökande λ.
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