
LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Solution to written exam in Quantum Physics and Statistical Physics
F0018T / MTF131
Examination date: 2009-08-29
Note solutions are more detailed compared to previous solutions, earlier than October 2007.

1. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the Collection of
formulae we find

ψ100(r) =
(

Z3

πa3

0

)1/2
e−Zr/a0

ψ200(r) =
(

Z3

8πa3

0

)1/2 (

1 − Zr
2a0

)

e−Zr/2a0

ψ210(r) =
(

Z3

32πa3

0

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(

Z3

πa3

0

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1 → Z = 2. According
to the expansion theorem, it is possible to express the wave function ui(r) before the decay as a
linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑

j

ajvj(r)

where
aj =

∫

v∗j (r)ui(r)d3r.

The probability to find the electron in state j is given by |aj|2.

(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(

1

πa3
0

)1/2 (
23

8πa3
0

)1/2
∫ ∞

0
e−r/a0

(

1 − 2r

2a0

)

e−2r/2a04πr2dr

=
4

a3
0

∫ ∞

0
e−2r/a0

(

r2 − r3

a0

)

dr =
4

a3
0

[

2
(

a0

2

)3

− 6

a0

(

a0

2

)4
]

= −1

2
.

Thus, the probability is 1/4 = 0.25.

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[

−cos 2θ

4

]π

0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is

∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.
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(c) Here ui = ψ100(Z = 1) and vj = ψ100(Z = 2). This gives

a =

(

1

πa3
0

)1/2 (
23

πa3
0

)1/2
∫ ∞

0
e−r/a0e−2r/a04πr2dr =

8
√

2

a3
0

∫ ∞

0
e−3r/a0r2dr

=
8
√

2

a3
0

a3
0

33

∫ ∞

0
e−xx2dx =

8
√

2

27

∫ ∞

0
e−xx2dx =

8
√

2

27

∫ ∞

0
2e−xdx =

16
√

2

27

Thus, the probability is 512/729 ≈ 0.70233.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)

(d) No l has to be less than n.

2. The energies of the states are given by ǫj = (j + 1
2
)h̄ω. Note that we can treat the oscillators as

independent from each other. To find the fraction of oscillators in a particular state is the same
as to ask for the probability of a oscillator to be in that particular state. In order to find the
probabilities (fractions) we need to calculate the partition function for the system consisting of a

single oscillator Z =
∑

e−(j+ 1

2
)h̄ω/τ = e−

h̄ω
2τ
∑∞

n=0 e
−nh̄ω/τ = e−

h̄ω
2τ

1
1−e−h̄ω/τ . Note the partition

function is a geometric sum. At the characteristic temperature given by τch = h̄ω the partition
function is Z = e−

1

2
1

1−e−1 = 1
e1/2−e−1/2

.

The fraction of oscillators in the ground state (j = 0) is given by

f0 = e−ǫ0/τ

Z
= e−

1

2 (e1/2 − e−1/2) = (1 − e−1) = 0.632.

The next states (j = 1) fraction is given by f1 = e−ǫ1/τ

Z
= e−

3

2 (e1/2 − e−1/2) = (e−1 − e−2) = 0.233.

The next states (j = 2) fraction is given by

f2 = e−ǫ2/τ

Z
= e−

5

2 (e1/2 − e−1/2) = (e−2 − e−3) = 0.0855.

The next states (j = 3) fraction is given by

f3 = e−ǫ3/τ

Z
= e−

7

2 (e1/2 − e−1/2) = (e−3 − e−4) = 0.0315.

3. Same as problem 4.4 in Bransden & Joachain. In the region where the potential is zero (x < 0)
the solutions are of the traveling wave form eikx and e−ikx, where k2 = 2mE/h̄2. A plane wave
ψ(x) = Aei(kx−ωt) describes a particle moving from x = −∞ towards x = ∞. The probability
current associated with this plane wave is
j = h̄

2mi
| A |2 (e−ikx ∂

∂x
e+ikx − e+ikx ∂

∂x
e−ikx) =| A |2 h̄

m
k =| A |2 v

A plane wave ψ(x) = Bei(−kx−ωt) describes a particle moving the opposite direction from x = ∞
towards x = −∞. The probability current associated with this plane wave is
j = h̄

2mi
| B |2 (e+ikx ∂

∂x
e−ikx − e−ikx ∂

∂x
e+ikx) = − | B |2 h̄

m
k = − | B |2 v

(a) Solution for the region x > 0 where the potential is V0 = 5.0eV. The potential step is larger
than the kinetic energy 2.5 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

Ψ(x) =

{

Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceκx +De−κx for x > 0 where κ2 = 2m(V0 − E)/h̄2

we can put C = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches ∞. At x = 0 both the wavefunction and its derivative have to be continous
functions. The derivative is:

∂Ψ(x)

∂x
=

{

Aikeikx −Bike−ikx

−Dκe−κx
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At x = 0 we arrive at the following two equations:

{

A+B = D
iAk − iBk = −Dκ solving for







D
A

= 2k
k+κ

B
A

= k−iκ
k+iκ

solving for















D
A

= 2

1+i
√

V0/E−1

B
A

=
1−i

√
V0/E−1

1+i
√

V0/E−1

We can now calculate the coefficient of reflection, R The coeficients represent the following
amplitudes: A is the incident beam, B is the reflected beam and C is the transmitted
beam. The associated probability currents are denoted jA, jB and jC . Conservation yealds
jA = jB + jC . Hence we can define the coeficient of reflection as the fraction of reflected
flux R = |jB |

|jA| and the coeficient of transmission as T = |jC |
|jA|

{

R = |jB |
|jA| = B2k

A2k
= 1

This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that T = 0 as the currents have to be conserved.

(b) This case can be seen as either the limiting case of a) or c). Both give the same answer
R = 1 and T = 0.

(c) Solution for the region x > 0 where the potential is V0 = 5.0eV. The potential step is
smaller than the kinetic energy 7.5eV of the incident beam. The particle may therefore
enter this region classically. It will however lose some of its kinetic energy. In quantum
mechanics there is a probabillity for the wave to be reflected as well. The two solutions for
the two regions are:

Ψ(x) =

{

Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceik′x +De−ik′x for x > 0 where k′2 = 2m(E − V0)/h̄
2

whe can put D = 0 as there cannot be an incident beam from x = ∞. At x = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:

∂Ψ(x)

∂x
=

{

Aikeikx −Bike−ikx

Cik′eik′x

At x = 0 we arrive at the following two equations:

{

A+B = C
Ak −Bk = Ck′

solving for







C
A

= 2k
k+k′

B
A

= k−k′

k+k′

solving for











C
A

= 2
√

E√
E+

√
E−V0

B
A

=
√

E−
√

E−V0√
E+

√
E−V0

The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C is the transmitted beam. The associated probability currents are
denoted jA, jB and jC . Conservation yealds jA = jB + jC . Hence we can define the
coeficient of reflection as the fraction of reflected flux R = |jB |

|jA| and the coeficient of

transmission as T = |jC |
|jA|











R = |jB |
|jA| = B2k

A2k
=
(

B
A

)2
=
(√

E−
√

E−V0√
E+

√
E−V0

)2
=
(√

7.5−
√

2.5√
7.5+

√
2.5

)2
= 0.071797

T = |jC |
|jA| = C2k′

A2k
=
(

C
A

)2 √
E−V0√

E
=
(

2
√

E√
E+

√
E−V0

)2 √
E−V0√

E
=
(

2
√

7.5√
7.5+

√
2.5

)2 √
2.5√
7.5

= 0.928203

The last result could also be reached by T +R = 1.
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4. Count the states in a box of size L. After some steps one reaches at (eq 7 page 185 KK)

τF = (3π2n)
2/3 h̄2

2m
this gives TF = kBτF = 5.0K which much less than T = 0.5K so the

approximation of the Fermi-Dirac distribution function as a step function will be fairly good.
Calculate U (along lines according to eq 27 page 189 KK) after some steps Cv = 1

2
π2NkBT/TF is

reached. Evaluating the fermi contribution gives Cv = 0.196NkB = 1.64 J/mole/K at T = 0.2K.

5. The overall strategy is as follows. The specific heat we get from the entropy which we get from
the free energy and to reach the free energy we need to calculate the partition function.

The partition function of the rotor is (approximation for the low temperature limit, in this limit
the rotor will spend most of its time in the ground state and litle time in the lowest excited state
and negligable time in higher excited states)

Zrot =
∑∞

j=0(2j + 1)e−j(j+1) h̄2

2Iτ ≈ 1 + 3e−
h̄2

Iτ = 1 + 3e−x where x = h̄2

Iτ
>> 1 in the low

temperature limit. For N identical molecules Z
(N)

rot = 1
N !
ZN

rot, and hence the free energy is
Frot = −Nτ lnZrot + τ lnN ! = −Nτ ln(1 + 3e−x) + τ lnN ! ≈ −3Nτe−x + τ lnN ! =

−3Nτe−
h̄2

Iτ + τ lnN !. The entropy is: σrot = −(∂F
∂τ

)v ≈
3N(1 + x)e−x + lnN ! = 3N(1 + h̄2

Iτ
)e−

h̄2

Iτ + lnN ! and the specific heat in the low temperature

limit is: (Cv)rot = τ(∂σ
∂τ

)v ≈ 3Nx2e−x = 3N
(

h̄2

Iτ

)2
e−

h̄2

Iτ .

An alternative route is as follows. You can also calculate the inner energy

U = −τ 2( ∂
∂τ

F
τ
)v,N = 3N

(

h̄2

Iτ

)

e−
h̄2

Iτ . From this you reach the specific heat as well.
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