LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	MTF131
Examination date	$2005-12-17$
Time	$09.00-14.00$

Examination in: Quantum Mechanics and Statistical Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Examiner: Hans Weber
The results are put up:
Tel: 4920 88, Room E111
Tel: 4920 88, Room E111
9 January 2006 on the notice-board, building E The marking may be scrutinised: after the results have been put up

Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points is required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Particle in a one-dimensional box

A particle is confined to a one-dimensional infinite square well described by the potential $V(x)$,

$$
V(x)=\left\{\begin{array}{cll}
0 & \text { for } & 0 \leq x \leq L \\
+\infty & \text { for } & x>L, \text { or } x<0
\end{array}\right.
$$

a) Calculate the normalised eigenfunctions $\psi_{n}(x)$ of the system.
b) Calculate the eigenenergies E_{n} of the system.
c) The size of the box is increased (to L^{\prime}) according to $L^{\prime}=3 L$. If ν is the emited photon frequency for a transition from the lowest excited state to the ground state. What would the corresponding frequency ν^{\prime} be for photon emision for a box of size L^{\prime} (express your answer in terms of ν).

2. van der Waals gas

The partition function Z for a gas of N interacting particles is given by

$$
Z=\left(\frac{V-b N}{N}\right)^{N}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N}{2}} e^{\frac{a N^{2}}{V k_{B} T}}
$$

where a and b are constants and V is the volume. Derive the equation of state of the gas and also evaluate it's energy U.

3. Binding of O_{2} to hemoglobin

A hemoglobin molecule can bind four O_{2} molecules. Assume ϵ is the energy of each bound O_{2}, relative to O_{2} at rest at infinite distance. Let λ denote the absolute activity $e^{\mu / \tau}$ of free O_{2} (in solution).
(a) What is the probability that one and only one O_{2} is adsorbed on a hemoglobin molecule?
(b) What is the probability that four O_{2} are adsorbed on a hemoglobin molecule?
(c) Make a sketch of these probabilities as a function of λ.

4. Spin

Evaluate for a spin $1 / 2$ particle described by the spinor χ the expectation values of the 3 cartesian components ($<S_{x}>,<S_{y}>,<S_{z}>$) of the spin and also their squares $\left.\left.\left(<S_{x}^{2}\right\rangle,<S_{y}^{2}>,<S_{z}^{2}\right\rangle\right)$

$$
\begin{equation*}
\chi=\frac{1}{3}\binom{2-i}{2} . \tag{3p}
\end{equation*}
$$

5. Quantum rotator

The Hamiltonian (in units of eV) for a given axially symmetric quantum rotator is

$$
H=\frac{L_{x}^{2}+L_{y}^{2}}{2 \hbar^{2}}+\frac{L_{z}^{2}}{3 \hbar^{2}}
$$

What are the possible energies?

GOOD LUCK!

