LULEÅ UNIVERSITY OF TECHNOLOGY
 Division of Physics

Course code	MTF131
Examination date	$2007-09-01$
Time	$09.00-14.00$

Examination in: Quantum Mechanics and Statistical Physics

Total number of problems: 5
Teacher on duty: Hans Weber Examiner: Hans Weber
The results are put up:
The marking may be scrutinised:

Tel: 492088 or 0708-592088, Room E111
Tel: 492088 or 0708-592088, Room E111
24 September 2007 on the notice-board, building E after the results have been put up

Allowed aids: Fysikalia, Physics Handbook, Beta, calculator,Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Two dimensional Rectangular well

A particle is placed in the potential (a 2 dimensional rectangular well)

$$
V(x)=\left\{\begin{array}{cll}
0 & \text { for } & 0 \leq x \leq a \text { and } 0 \leq y \leq \sqrt{2} a \\
+\infty & \text { for } & x>a, x<0 \text { and } y>\sqrt{2} a, y<0
\end{array}\right.
$$

(a) Calculate (solve the Schrödinger equation) the eigenfunctions !
(b) What are the 5 lowest eigenenergies ?
(c) What are the degeneracies of these 5 lowest eigenstates?

2. van der Waals gas

The partition function Z for a gas of N interacting particles is given by

$$
Z=\left(\frac{V-b N}{N}\right)^{N}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N}{2}} e^{\frac{a N^{2}}{V k_{B} T}}
$$

where a and b are constants and V is the volume. Derive the equation of state of the gas and also evaluate it's energy U.

3. Helium ${ }^{3} \mathrm{He}$

Helium ${ }^{3} \mathrm{He}$ has spin $=\frac{1}{2}$ and may at low temperatures to a good approximation be described as an ideal Fermi gas. At these low temperatures ${ }^{3} \mathrm{He}$ is in the liquid phase with a density of $\rho=83 \mathrm{~kg} \mathrm{~m}^{-3}$. Determine the Fermi temperature T_{F} and also the specific heat C_{v} of ${ }^{3} \mathrm{He}$ at $\mathrm{T}=0.5 \mathrm{~K}$.

4. Diatomic molecule

An ideal gas consists of N identical molecules. Each molecule consists of two atoms with the following rotational energy levels: $E(j)=j(j+1) \frac{\hbar^{2}}{2 I}, j=0,1,2, \ldots$. Where I is the moment of inertia. Each level is $(2 j+1)$ times degenerate. Determine to lowest order in temperature the contribution to C_{v} from the rotational degrees of freedom.

5. Angular momentum

A particle is placed in a spherically symmetric potential $V(r)$. The particle is in a stationary state described by

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N(x y+z y) e^{-\alpha r}
$$

where N and α are constants.
(a) A measurement of L^{2} and L_{z} is done on the system. Calculate the possible values and their probabilities.
(b) Calculate the expectation values $\left\langle L^{2}\right\rangle$ and $\left\langle L_{z}\right\rangle$.

