LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F0018T / MTF131
Examination date	$2007-12-21$
Time	$09.00-14.00$

Examination in: Quantum Mechanics and Statistical Physics
Total number of problems: 5
Teacher on duty: Niklas Lehto
Examiner: Hans Weber
The results are put up:
The marking may be scrutinised:
Tel: 492085, Room E310
Tel: 492088 or 0708-592088, Room E111
11 January 2008 on the notice-board, building E
after the results have been put up
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator,Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Entropy

Considering some simple arguments regarding the specific heat C_{v} answer to following questions.
a) By how large factor will the entropy of the conduction electrons of metal change as the temperature is raised from 100 K to 400 K ?
b) By how large factor will the entropy of the electromagnetic radiation field in a cavity change as the temperature is raised from 500 K to 1500 K ?

2. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?
(a) $\psi(t)=\sin \omega t$ and $\hat{A}=i \hbar \frac{\partial^{2}}{\partial t^{2}}$.
(b) $\psi(z)=C\left(1+z^{2}\right)$ and $\hat{A}=-i \hbar \frac{\partial}{\partial z}$.
(c) $\psi(z)=C_{1} e^{i k z}+C_{2} e^{-i k z}$ and $\hat{A}=-\hbar^{2} \frac{\partial^{2}}{\partial z^{2}}$.
(d) $\psi(z)=C e^{-3 z}$ and $\hat{A}=-i \frac{\hbar}{2} \frac{\partial}{\partial z}$.
(e) $\psi(z)=C z e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.
(f) $\psi(z)=C e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.

3. Wave functions and eigenfunctions

Consider a free particle with mass m in one dimension. The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\sin ^{3} k x .
$$

(a) Show that the state function $\psi(x, 0)$ can be written as a superposition of eigenfunctions of the free-particle Hamiltonian.
(b) Determine the energy of each plane wave in the superposition.
(c) Give the wave function $\psi(x, t)$ at an arbitrary time t.

4. Misc.

a) Evaluate the commutator $\left[y^{2}, p_{y}^{2}\right]$.
b) The ion Be^{3+} has the nuclear charge +4 but only one electron. How much energy does it take to excite the electron from the ground state to the level 2 s ? Give a numerical value in electron Volts (eV)!
c) The wave function of a hydrogen atom in an eigenstate to the Hamilton operator is:

$$
\Psi(r, \theta, \phi)=\frac{1}{81 \sqrt{6 \pi}}\left(1 / a_{\mu}\right)^{3 / 2}\left(r^{2} / a_{\mu}^{2}\right) e^{-r / 3 a_{\mu}}\left[3 \cos ^{2} \theta-1\right],
$$

where a_{μ} is the Bohr radius (with the reduced mass). Determine the quantum numbers n, l och m_{l}.

5. Harmonic oscillator

A system consists of N identical one dimensional harmonic oscillators. Evaluate the fractions of oscillators n_{j} / N that are in the 3 lowest $((j=0,1$ och 2$)$ energy states at the characteristic temperature $\tau_{c h}$. The energies of the oscillators are given by $\epsilon_{j}=(j+1 / 2) \hbar \omega$ and the characteristic temperature $\tau_{c h}$ is given by $\tau_{c h}=\hbar \omega$.

