LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F0018T / MTF131
Examination date	$2008-12-19$
Time	$09.00-14.00$

Examination in: Quantum Mechanics and Statistical Physics
Total number of problems: 5
Teacher on duty: Niklas Lehto
Teacher on duty: Hans Weber
Examiner: Hans Weber
The results are put up:
The marking may be scrutinised:

Tel: 492085, 0703-337717 Room E310
Tel: 492088, Room E111
Tel: 492088 or 0708-592088, Room E111
21 November 2008.
after the results have been anounced

Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Reflexion and transmission at potential step

Consider an electron of energy E incident on the potential step $V(x)$,

$$
V(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
V_{0} & \text { for } & x>0
\end{array}\right.
$$

where $V_{0}=10.0 \mathrm{eV}$. Calculate the reflection coefficient R and the transmission coefficient T
a) when $E=5.0 \mathrm{eV}$,
b) when $E=15.0 \mathrm{eV}$,
c) when $E=10.0 \mathrm{eV}$.

2. Measurement of spin

A spin $\frac{1}{2}$ particle is prepared to be in an eigenstate to S_{z} with eigenvalue $+\frac{1}{2} \hbar$. A subsequent measurement of the spin in the direction $\hat{n}=\sin (\varphi) \hat{e}_{y}+\cos (\varphi) \hat{e}_{z}$ is made. The value of φ is $\pi / 4$.
(a) What is the probability to get the value $+\hbar / 2$ and $-\hbar / 2$ in this new direction \hat{n} ?
(b) What would the result (eigenvalue and probability) be of a subsequent measurement in the z-direction of the $+\hbar / 2$ state in a)?

3. Eigenfunctions and uncertainty

An electron confined in a quantum well has four discrete energy levels $E_{1}=0.31 \mathrm{eV}, E_{2}=$ $0.97 \mathrm{eV}, E_{3}=1.81 \mathrm{eV}, E_{4}=3.35 \mathrm{eV}, E_{5}=4.08 \mathrm{eV}$. It is in a state in which the probabilities associated with these energies are $\frac{1}{2}, \frac{2}{12}, \frac{1}{12}, \frac{3}{16}$ and $\frac{1}{16}$ respectively.
(a) Find the expectation value of its energy $\langle\hat{H}\rangle$ and the corresponding uncertainty $\Delta \hat{H}$.
(b) Obtain an expression for the wave function $\Psi(z)$ describing the state of the particle in terms of its energy eigenfunctions $\psi_{n}(z)$ at time $t=0$. Why is the expression not unique? Write down two different wave functions corresponding to the same values of $\langle\hat{H}\rangle$ and $\Delta \hat{H}$ that you found in (a).
(c) Asume the potential is the infinite square well of width L, and you would have calculated $\langle\hat{H}\rangle$ in some way. If one adiabatically changes L to $L / 2$ by how much would $\langle\hat{H}\rangle$ change? Adiabatically means we are not inducing transitions between levels in the system.

4. Hydrogen like spectra

A space-engeneering student in Kiruna borrows a spectroscope and records the following spetrum (in visible light) of a hot star.

λ	(nm)	658.30	543.04	487.63	470.22	455.75
Intensity	(rel units)	80	30	15	200	8

λ	(nm)	435.38	421.45	411.44	403.97
Intensity	(rel units)	6	5	4	4

She reflects it looks very much like a Hydrogen Balmerseries but still it does not fit. Here friends suggest the spectrum might be from a Helium ion!

Assume it is the spectrum of a Helium ion and analyse the data. Determine for each spectral line the principal quantum numbers for the levels involved. (Note one line belongs to a different series)

5. Binding of O_{2} to hemoglobin

A hemoglobin molecule can bind four O_{2} molecules. Assume ϵ is the energy of each bound O_{2}, relative to O_{2} at rest at infinite distance. Let λ denote the absolute activity $e^{\mu / \tau}$ of free O_{2} (in solution).
(a) What is the probability that one and only one O_{2} is adsorbed on a hemoglobin molecule?
(b) What is the probability that four O_{2} are adsorbed on a hemoglobin molecule?
(c) Make a sketch of these probabilities as a function of λ.

