LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F0018T/MTF131
Examination date	$2009-12-18$
Time	$09.00-14.00$ (5 hours)

Examination in: Quantum Mechanics and Statistical Physics
Total number of problems: 5
Teacher on duty: Niklas Lehto
Teacher on duty: Hans Weber
Examiner: Hans Weber
Tel: 492085, 0703-337717 Room E310
Tel: 492088, Room B253
Tel: 492088 or 0708-592088, Room B253
Allowed aids: Course litterature, Fysikalia, Physics Handbook, Beta, calculator,Collection of FORMULAE

Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?
(a) $\psi(t)=\sin \omega t$ and $\hat{A}=i \hbar \frac{\partial^{2}}{\partial t^{2}}$.
(b) $\psi(z)=C\left(1+z^{2}\right)$ and $\hat{A}=-i \hbar \frac{\partial}{\partial z}$.
(c) $\psi(z)=C_{1} e^{i k z}+C_{2} e^{-i k z}$ and $\hat{A}=-\hbar^{2} \frac{\partial^{2}}{\partial z^{2}}$.
(d) $\psi(z)=C e^{-3 z}$ and $\hat{A}=-i \frac{\hbar}{2} \frac{\partial}{\partial z}$.
(e) $\psi(z)=C z e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.
(f) $\psi(z)=C e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.

2. Measurement of spin

A spin $\frac{1}{2}$ particle is prepared to be in an eigenstate to S_{z} with eigenvalue $+\frac{1}{2} \hbar$. A subsequent measurement of the spin in the direction $\hat{n}=\sin (\varphi) \hat{e}_{y}+\cos (\varphi) \hat{e}_{z}$ is made. The value of φ is $\pi / 4$.
(a) What is the probability to get the value $+\hbar / 2$ and $-\hbar / 2$ in this new direction \hat{n} ?
(b) What would the result (eigenvalue and probability) be of a subsequent measurement in the z-direction of the $+\hbar / 2$ state in a)?

3. Wave functions and eigenfunctions

Consider a free particle with mass m in one dimension. The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\cos ^{3} k x .
$$

(a) Show that the state function $\psi(x, 0)$ can be written as a superposition of eigenfunctions of the free-particle Hamiltonian.
(b) Determine the energy of each plane wave in the superposition.
(c) Give the wave function $\psi(x, t)$ at an arbitrary time t.

4. Binding of O_{2} to hemoglobin

A hemoglobin molecule can bind four O_{2} molecules. Assume ϵ is the energy of each bound O_{2}, relative to O_{2} at rest at infinite distance. Let λ denote the absolute activity $e^{\mu / \tau}$ of free O_{2} (in solution).
(a) What is the probability that one and only one O_{2} is adsorbed on a hemoglobin molecule?
(b) What is the probability that four O_{2} are adsorbed on a hemoglobin molecule?
(c) Make a sketch of these probabilities as a function of λ.
5. Misc.
a) Evaluate the commutator $\left[y^{2}, p_{y}^{2}\right]$.
b) The ion Be^{3+} has the nuclear charge +4 but only one electron. How much energy does it take to excite the electron from the ground state to the level 2 s ? Give a numerical value in electron Volts (eV)!
c) The wave function of a hydrogen atom in an eigenstate to the Hamilton operator is:

$$
\Psi(r, \theta, \phi)=\frac{1}{81 \sqrt{6 \pi}}\left(1 / a_{\mu}\right)^{3 / 2}\left(r^{2} / a_{\mu}^{2}\right) e^{-r / 3 a_{\mu}}\left[3 \cos ^{2} \theta-1\right],
$$

where a_{μ} is the Bohr radius (with the reduced mass). Determine the quantum numbers n, l och m_{l}.

