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ABSTRACT

We analyze the characteristic features of jam formation on a circular one–lane road. We have applied an
optimal velocity model including stochastic noise, where cars are treated as moving and interacting particles.
The motion of N cars is described by the system of 2N stochastic differential equations with multiplicative
white noise. Our system of cars behaves in qualitatively different ways depending on the values of control
parameters c (dimensionless density), b (sensitivity parameter characterising the fastness of relaxation), and
a (dimensionless noise intensity). In analogy to the gas–liquid phase transition in supersaturated vapour at
low enough temperatures, we observe three different regimes of traffic flow at small enough values of b < bcr.
There is the free flow regime (like gaseous phase) at small densities of cars, the coexistence of a jam and free
flow (like liquid and gas) at intermediate densities, and homogeneous dense traffic (like liquid phase) at large
densities. The transition from free flow to congested traffic occurs when the homogeneous solution becomes
unstable and evolves into the limit cycle. The opposite process takes place at a different density, so that we have
a hysteresis effect and phase transition of the first order. A phase transition of second order, characterised by
critical exponents, takes place at a certain critical density c = ccr. Inclusion of the stochastic noise allows us to
calculate the distribution of headway distances and time headways between the successive cars, as well as the
distribution of jam (car cluster) sizes in a congested traffic.

Keywords: Traffic flow, Optimal velocity model, Linear stability analysis, Multiplicative noise, Cluster forma-
tion, Critical phenomena

1. INTRODUCTION

The aggregation of particles out of an initially homogeneous situation is well known in physics. Depending on
the system under consideration and its control parameters the cluster formation in a supersaturated (metastable
or unstable) situation has been observed in nucleation physics as well as in other branches.1 We investigate the
well–known example of condensation (formation of liquid droplets) in an undercooled vapour to conclude that
the formation of bound states as a phase transition is related to transportation science.

In these terms the breakdown occurs through the formation of a certain critical nucleus in the metastable
vehicle flow, which enables us to confine ourselves to a one–cluster–model. We assume that, first, the growth of
the car cluster is governed by attachment of cars to the cluster whose rate is mainly determined by the mean
headway distance between the car in the vehicle flow and, may be, also by the headway distance in the cluster.
Second, the cluster dissolution is determined by the car escape from the cluster whose rate depends on the cluster
size directly. The latter is justified using the available experimental data for the correlation properties of the
synchronized mode. We write the appropriate master equation,2–6 converte it into the Fokker–Planck equation
for the cluster distribution function and analyze the formation of the critical car cluster due to the climb over
a certain potential barrier.7 The further cluster growth irreversibly gives rise to the jam formation. Numerical
estimates of the obtained characteristics and the experimental data of the traffic breakdown are compared.
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2. PHYSICS OF JAM FORMATION IN TRAFFIC FLOW

2.1. Equations of Motion: Deterministic Approach

2.1.1. Introduction. Bando model

Here we investigate the law of motion for circular traffic in terms of headway distances and velocity differences
between neighbouring cars. At first, we describe the motion according to the well known Bando model.8–10

Based on the stationary solution we construct the general solution which can be found from 2N differential
equations of first oder with respect to time. Using knowledge from matrix theory,11 we obtain the characteristic
equation from which we find Lyapunov exponents of our system.

We consider a model of point–like cars moving on a circular road of length L. The total number of cars is
N . We would like to describe the motion of our system. For each car, it is necessary to find its coordinate xi(t)
and velocity vi(t), for all vehicles i = 1, . . . , N . Within the framework of Bando’s model, we have the following
law of motion as a system of 2N first–oder differential equations for the unknown functions vi(t) and xi(t) with
respect to time t

dvi

dt
=

1

τ
(vopt(∆xi) − vi) ; (1)

dxi

dt
= vi (2)

where vopt(∆x) is the optimal velocity function given by the following expression

vopt(∆x) = vmax

(∆x)2

D2 + (∆x)2
(3)

where ∆xi = xi+1 − xi is the headway (bumper-to-bumper distance), vmax is the maximal speed allowed and D
is a given positive control parameter called interaction distance. According to the periodic boundary condition
we find

N∑

i=1

∆xi = 0 . (4)

We would like to introduce new dimensionless variables for velocities, coordinates and time in the following way

ui = vi/vmax , yi = xi/D , T = t/τ . (5)

After transformation (5) the dynamical system (1) – (2) can be rewritten as

dui

dT
= uopt(∆yi) − ui ; (6)

dyi

dT
=

1

b
ui , (7)

where the dimensionless optimal velocity uopt and the dimensionless control parameter b are given as

uopt(∆y) =
(∆y)2

1 + (∆y)2
and b =

D

τ vmax

. (8)

2.1.2. Neighbouring cars. Stationary solution

It is interesting to consider the system of equations (6) – (7) in terms of headway distances and velocity differences
between the neighbouring cars. For this purpose, we take the difference between the (i + 1)–th and the i–th
equation, which yields

d(ui+1 − ui)

dT
= (uopt(∆yi+1) − uopt(∆yi)) − (ui+1 − ui) , (9)

d(yi+1 − yi)

dT
=

1

b
(ui+1 − ui) , i = 1, . . . , N . (10)



It is naturally to introduce new variables

∆ui = ui+1 − ui ; ∆yi = yi+1 − yi (11)

and rewrite (9) – (10) in terms of ∆ui and ∆yi

d(∆ui)

dT
= (uopt(∆yi+1) − uopt(∆yi)) − ∆ui) ; (12)

d(∆yi)

dT
=

1

b
∆ui, i = 1, . . . , N . (13)

Due to periodic boundary conditions we will have

yN+1 = y1 . (14)

Let us find the stationary solution of the system (12) – (13). It means that functions ∆ui and ∆yi in these
equations do not depend on time T . Namely

uopt(∆yi+1) − uopt(∆yi) − ∆ui = 0 ; (15)

1

b
∆ui = 0 . (16)

The steady state or free flow solution for all vehicles i = 1 . . .N is

∆ust
i = 0 ; ∆yst

i =
L
N

, (17)

where L = L/D is the dimensionless length of the road.

2.1.3. Lyapunov exponents. Stability analysis

The stability of the stationary solution can be investigated by the method of small perturbations. Let us denote
δ∆ui and δ∆yi as velocity and coordinate perturbations respectively. Then we obtain

∆ui = ∆ust
i + δ∆ui ; (18)

∆yi = ∆yst
i + δ∆yi . (19)

Putting these expressions into (12) – (13) we obtain a system of equations in terms of δ∆ui and δ∆yi

d δ∆ui

dT
= k (δ∆yi+1 − δ∆yi) − δ∆ui , (20)

d δ∆yi

dT
=

1

b
δ∆ui (21)

where k = u′

opt(∆yst) is the first derivative of the optimal velocity function at the steady state solution.

Let us introduce vector ~x ∈ R
2N

~x = (δ∆y1, δ∆y2, ..., δ∆yN , δ∆u1, δ∆u2, ..., δ∆uN )T . (22)

Hence we can write the system of equations (20) – (21) in vector form

~̇x = A ~x (23)

where A is a block matrix with the following structure

A =

[
O B
K I

]

(24)



where

O =










0 0 . . 0 0
0 0 . . 0 0
. . . . . .
. . . . . .
0 0 . . 0 0
0 0 . . 0 0










; B =










1/b 0 . . 0 0
0 1/b . . 0 0
. . . . . .
. . . . . .
0 0 . . 1/b 0
0 0 . . 0 1/b










, (25)

K =










− k k . . 0 0
0 − k . . 0 0
. . . . . .
. . . . . .
0 0 . . − k k
k 0 . . 0 − k










, I =










−1 0 . . 0 0
0 − 1 . . 0 0
. . . . . .
. . . . . .
0 0 . . − 1 0
0 0 . . 0 − 1










. (26)

It is necessary to find the eigenvalues of matrix A for solving the vector differential equation (23). For this
purpose we construct the characteristic polynomial of matrix A (see Ref. 11)

P(λ) = det(A− λE2N×2N ) = det

[
O − λEN×N B

K I − λEN×N

]

= det

[
Λ B
K Y

]

(27)

where E2N×2N and EN×N are identity matrices with dimension 2N × 2N and N × N respectively. Matrices Λ
and Y are given by

Λ =










−λ 0 . . 0 0
0 −λ . . 0 0
. . . . . .
. . . . . .
0 0 . . −λ 0
0 0 . . 0 −λ










, (28)

Y =










− 1 − λ 0 . . 0 0
0 − 1 − λ . . 0 0
. . . . . .
. . . . . .
0 0 . . − 1 − λ 0
0 0 . . 0 − 1 − λ










. (29)

The eigenvalues are the solutions of the equation

P(λ) = 0 . (30)

As a trivial solution, one eigenvalue is λ = −1. Since detY 6= 0 holds for other eigenvalues (λ 6= −1), the
calculation of determinant (27) can be simplified11

det

[
Λ B
K Y

]

= det

[
Λ − BY−1K 0

K Y

]

= det (Λ − BY−1K)det (Y) . (31)

Hence, the characteristic polynomial has the form

P(λ) = (−1 − λ)N det (Λ − BY−1K) =

(

(−1 − λ) +
k

b

)N

−
(

k

b

)N

(32)

and all eigenvalues λi, i = 1, . . . , 2N are found from equation (32) using (30). Since k/b is a nonzero constant
the characteristic equation P(λ) = 0 can be rewritten as

(
b

k
(−1 − λ) + 1

)N

− 1 = 0 . (33)



Using the fact that N
√

1 = exp
(

2πm
N

)
= cos

(
2πm
N

)
+ i sin

(
2πm
N

)
, m = 0, . . . , N − 1 we obtain the following

quadratic equation

λ2 + λ +
k

b

(

1 − exp

(
2πm

N

))

= 0 (34)

which can be solved easily by putting λ = Reλ + i Im λ = α + iβ. Hence, α and β are solutions of the system

α2 − β2 + α +
k

b

(

1 − cos

(
2πm

N

))

= 0 , (35)

2α β + β − k

b
sin

(
2πm

N

)

= 0 . (36)

The homogeneous solution looses the stability at a certain value of k/b when α vanishes for some m. According
to (35) – (36), it takes place at

α = 0 , β =
k

b
sin

(
2πm

N

)

,
k

b
=

1

1 + cos
(

2πm
N

) . (37)

The stability border corresponds to the value of k/b at which the real part of one of the eigenvalues vanishes for
the first time and then becomes positive if k/b is increased. It occurs first with the eigenvalue indexed by m = 1,
since for m = 0 we have got λ = 0 ≡ λ0 and λ ≡ −1.

Let us find the eigenvector ~x0 which correponds to λ0. It is given by

A ~x0 = λ0 ~x0 . (38)

According to that fact that matrix A has the block structure (24) we define vector ~x0 as two component vector

~x0 =

[
~x1

0

~x2
0

]

(39)

where ~x1
0 and ~x2

0 are N -dimensional vectors. Then the vector equation can be written

[
O B
K I

] [
~x1

0

~x2
0

]

= λ0

[
~x1

0

~x2
0

]

. (40)

The linear system respect to vectors ~x1
0 and ~x2

0 is followed by the equation (40)

B ~x2
0 = λ0 ~x1

0 (41)

K ~x1
0 + I ~x2

0 = λ0 ~x2
0 . (42)

Due to the fact that right parts of vector equations (41) – (42) equal to zero, i. e. λ0 = 0, we obtain that vectors
~x1

0 and ~x2
0 are linearly independent. That is why, we can say that vector ~x1

0 equals to one (it means, according
to construction of ~x1

0 and ~x2
0, that each component of ~x1

0 is equal to one) and vector ~x2
0 can be found using (26)

and (41) – (42). Namely,
K ~x1

0 = −I ~x2
0 (43)

or in other words, component by







− k + k
k + (− k)

.

.
k + (− k)








=








− x2
0,1

− x2
0,2

.

.
− x2

0,N








. (44)

We obtain that each component of ~x2
0 equals to zero. As result, we can write the eigenvector ~x0 which corresponds

to zero eigenvalue λ0. We find
~x0 = [1 , 1 , . . 1 , 1 ,

︸ ︷︷ ︸

N

0 , 0 , . . 0 , 0
︸ ︷︷ ︸

N

]T . (45)



The another interesting fact, that decomposition coefficient c0 of any vector ~x (22) on eigenvalue λ0 and eigen-
vector ~x0 is equal to zero. It is easy to see, that is

c0 = ~x · ~x0 =

N∑

i=1

xi =

N∑

i=1

δ∆yi = 0 (46)

in connection with periodic boundary condition (4). The operator · means the scalar product of two vectors in
R

2N .

2.1.4. Stability diagram

We are interested in studying the stability regions in b-c-plane, where c = N/L is the dimensionless density of cars,
both for homogeneous and heterogeneous solutions depending on the initial conditions as well as the total number
of cars N . The homogeneous flow described by the stationary solution of (6) – (7), i. e., ∆yst

i = L/N = 1/c and
ust

i = uopt (∆yst
i ), becomes unstable when entering the region b < b(c), where b(c) is given by

b(c) = u′

opt

(
1

c

) (

1 + cos

(
2π

N

))

(47)

with

u′

opt

(
1

c

)

=
2 c3

(1 + c2)2
, (48)

as consistent with the stability condition (37) at m = 1. The maximum of b(c) corresponds to the critical
concentration ccr =

√
3. The finite–size effect on the phase diagram, where the regions of stable and unstable

homogeneous flow are separated by b(c) curve, is illustrated in Fig. 1. The homogeneous stationary solution (12)–

0 1.0 2.5c

0.8

1.0

1.2

b

c
cr

b
cr

0 1.0 2.5c

1.0

1.2

b

c
cr

b
cr

Figure 1. Phase diagram as b-c-plane for a system with fixed different number of cars N . From the bottom to the top
solid curves b(c) show the stability border of the homogeneous traffic flow at N = 6, N = 10, and N = 60, respectively.
The dotted curve is the function b(c) when N tends to infinity. Each b(c) plot has a maximum at the critical density
ccr =

√
3 ≈ 1.732. The maximum value at N → ∞ is bcr = 3

√
3/4 ≈ 1.299. The dashed curve in the right hand side

figure shows the stability border of the heterogeneous traffic flow at N = 60 (numerical simulation). It becomes unstable
when exiting the region below this curve.

(13) transforms into a heterogeneous limit–cycle solution when entering the region below the b(c) curve. The
stability of the limit–cycle solution for N = 60 cars has been studied numerically, and we have found that it
becomes unstable when exiting the region below the dashed curve shown in Fig. 1 (right). In other words, like
in many physical systems (e. g. supersaturated vapour), we observe a hysteresis effect which is a property of the
first–order phase transition. The stationary state of the system between the solid and dashed curves (at a given
N) is of the same type as the initial conditions.



2.1.5. Bifurcation diagrams and critical exponents

According to the stability diagram discussed in Sec. 2.1.4, a phase transition from heterogeneous state to ho-
mogeneous one takes place at a fixed density c when parameter b is increased and reaches the dashed curve
in Fig. 1 (right). The heterogeneous state is characterised by the minimal umin and the maximal umax val-
ues of the velocity u in the limit cycle. At the critical density c = ccr =

√
3 both branches umin = umin(b)

and umax = umax(b) continuously mearge into one branche umin(b) = umax(b) = uhom at the critical point
b = bcr = (3

√
3/8)(1 + cos(2π/N)), where uhom = 1/(1 + c2) is the steady state velocity of the homogeneous

flow. It is the supercritical bifurcation diagram shown in Fig. 2 (right) for a finite number of cars N = 60. The
transformation is discontinuous at c 6= ccr, as consistent with the subcritical bifurcation diagram at c = 1.5 on
the left hand side of Fig. 2. These diagrams have been considered earlier.12 Now we have made a more precise
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0.6

u u
max

u
min

u
hom
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0.6

u u
max

u
min

u
hom

Figure 2. Subcritical bifurcation diagram at c = 1.5 (left) and supercritical bifurcation diagram at the critical density
c = ccr =

√
3 (right) for the minimal and maximal velocities depending on the control parameter b at a fixed number of

cars N = 60.

calculation by using the analytically determined exact values of ccr and bcr to evaluate more precisely the critical
exponents β1 and β2, which are related to the power–like singularities of umax and umin at c = ccr and b → bcr,
i. e.,

umax(b) − uhom ∝ (bcr − b)β1 (49)

uhom − umin(b) ∝ (bcr − b)β1 . (50)

We have defined the effective critical exponents βeff
1 (h) and βeff

2 (h) as the slope of the log–log plot evaluated
from the data at b = bcr − h and b = bcr − 2h. The results are shown in Fig. 3. The true (asymptotic) values of
the critical exponents are obtained at h → 0. Fig. 3 represents a numerical evidence that both exponents β1 and
β2 have the same universal mean–field value 1/2. It shows also that an evaluation of critical exponent by simply
measuring the slope of the log-log plot at a quite small distance from the critical point, e. g. at h ∼ 0.006, is
rather misleading.

2.1.6. Advanced Bando model

A disadvantage of the optimal velocity model (1)–(2) is that it is not collision free. In other words, it does not
ensure the solution where all the headway distances are always positive. In particular, we never succeded to
get a limit–cycle solution without collisions at b < 0.86. An important feature of Bando as well as our optimal
velocity model (1)–(2) is the symmetry between acceleration and braking. In real traffic, however, the braking
(deceleration) can be remarkably larger than the acceleration, which is important to avoid collisions. Below we
propose a collision–free model which includes this asymmetry.
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Figure 3. The effective critical exponets βeff
1

(h) (solid circles) and βeff
2

(h) (empty circles) estimated from the umax(b)
and umin(b) data, respectively, at finite distances from the critical point: b = bcr − h and b = bcr − 2h. The universal
asymptotic value of the critical exponent β = 0.5 is obtained at h → 0.

According to Newton law of motion and using our old notations we have the following set of 2N differential
equations

m
dvi

dt
= Fdet(vi, ∆xi) ; (51)

dxi

dt
= vi (52)

where m is mass of point-like particle. Now we split the deterministic force Fdet(vi, ∆xi) into two parts

Fdet(vi, ∆xi) = Facc(vi) + Fdec(vi, ∆xi) (53)

with acceleration and deceleration ansatz

Facc(vi) =
m

τ
(vmax − vi) ≥ 0 (54)

Fdec(vi, ∆xi) =
m

τ
(vopt(∆xi) − vmax)

(

1 +

(

p
vi

∆xi

)2
)

≤ 0 (55)

taking into account the optimal velocity function (3). The deceleration force Fdec includes a symmetry–breaking
term with new parameter p. A simple consideration shows that a deceleration −dvi/dt > v2

0/(2∆x) is large
enough for a car moving with initial velocity v0 to stop before a vehicle staying in front of it at an initial distance
∆x. According to safety considerations, a car has to decelerate even stronger at small distances ∆x, therefore
we have assumed in (55) that the additional term in Fdec is proportional to (vi/∆xi)

2. At this condition a car
never can reach with nonzero velocity v′ = vi(t

′) (at a time moment t = t′) another car staying in front of it,
since the assumption v′ > 0 leads to a contradiction: it implies that −dvi/dt > v2

i (t0)/(2∆x(t0)) holds within
certain time interval t0 < t < t′, which by itself rules out the collision. The original Bando model (1)–(2) is
recovered at p = 0. If p is a small parameter, then the new model behaves practically in the same way as the
old one, except only those critical situations where some car produces an accident in the old model, and now
its motion is corrected to avoid the collision. The deceleration force term due to to interaction between cars is
always negative

Fdec = − vmax

m

τ

1

1 + (∆xi/D)
2

(

1 +

(

p
vi

∆xi

)2
)

. (56)



Using acceleration (54) and deceleration (56) ansatz we are able to write the deterministic force Fdet as

Fdet(vi, ∆xi) = vmax

m

τ

(

1 − vi

vmax

− 1

1 + (∆xi/D)
2

)(

1 +

(

p
vi

∆xi

)2
)

. (57)

As earlier, it is convenient to make our equations of motion dimensionless (5). Finally we obtain

dui

dT
= 1 − ui −

1

1 + (∆yi)
2

(

1 +

(

p̃
ui

∆yi

)2
)

(58)

dyi

dT
=

1

b
ui (59)

where p̃ = pvmax/D.

To illustrate the difference between the new and old models, we have made a numerical calculation at b = 1
for one car with the initial coordinate y = 0 and velocity u = 0.7 having a wall (or, equally, another staying
car) in front of it at the position y = 1. We have plotted in Fig. 4 the velocity u depending on the coordinate
y for the Bando model with p̃ = 0 (dot–dashed curve), as well as for the new advanced model with p̃ = 0.2
(solid curve). As it is seen, the car reaches the wall with nonzero velocity in the original model. To the contrary,
no accident occurs in the new model. In this case the car approaches the wall asymptotically at T → ∞ with
vanishing velocity u → 0.

0 0.2 0.4 0.6 0.8 1y
0

0.2

0.4

0.6

u

Figure 4. The dimensionless velocity u vs coordinate y for one car with the initial coordinate y = 0 and velocity u = 0.7
having a wall at the position y = 1 in front of it. The dashed line, showing a collision with the wall, corresponds to the
optimal velocity model (p̃ = 0), whereas the solid line corresponds to the advanced collision–free model with p̃ = 0.2.

The homogeneous steady state solution dui/dT = 0 of system (58) – (59) reads

1 − ui −
1

1 + (∆yi)
2

(

1 +

(

p̃
ui

∆yi

)2
)

= 0 . (60)

It corresponds to equal headways ∆yi = L/N = 1/c. The steady state velocity can be found as the positive root
of the quadratic equation

u2
i +

(∆yi)
2

p̃2

(
1 + (∆yi)

2
)
ui −

(∆yi)
4

p̃2
= 0 (61)

which follows from (60). It yields

ui =
(∆yi)

2(1 + (∆yi)
2)

2 p̃2

(√

1 +
4 p̃2

(1 + (∆yi)2)2
− 1

)

. (62)



The result of the optimal velocity model ui = uopt(∆yi) is recovered at p̃ → 0.

In Fig 5 the steady state velocity of the new model with p̃ = 1 is compared to that of the optimal velocity model
with p̃ = 0. The difference is relatively small at p̃ = 1 and even much (about 100 times) smaller at p̃ = 0.1. The
latter implies that the additional term with p̃ practically does not change the properties of the original optimal
velocity model at p̃ ∼ 0.1, except that it makes the model collision free.
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Figure 5. The steady state velocity of a homogeneous traffic flow depending on the headway distance ∆y. The solid line
corresponds to the optimal velocity model (p̃ = 0), the dashed line indicates the result of the new model with p̃ = 1.

2.2. Equations of Motion: Langevin Approach

Recently, the theoretical and empirical foundations of physics of traffic flow have come into the focus of the
physical community, see e. g. Ref. 13. Different approaches like deterministic and stochastic nonlinear dynamics
as well as statistical physics of many–particle systems have been very successful in understanding empirically
observed structure formation on roads like jam formation in freeway traffic. The motion of an individual vehicle
has many peculiarities, since it is controlled by motivated driver behaviour together with physical constraints.
Nevertheless, on macroscopic scales the car ensemble displays phenomena like phase formation (nucleation),
widely met in different physical systems. Although the cooperative behaviour of cars treated as active particles
seems to be more general, we concentrate as before on a well–investigated approximation known as safety distance
or optimal velocity (OV) model, first proposed by Bando et al.8–10

The OV model of a one-lane road with periodic boundary conditions is based in the Langevin approach on
the following set of acceleration equations

dvi

dt
=

vopt(∆xi) − vi

τ
+ ξi(t) . (63)

Neglecting the noise term ξi, the position xi(t) as well as the velocity vi(t) of each car i = 1, . . . , N at every time
moment t can be calculated out of the initial values by integrating the coupled equations of motion (remember
Sect. 2.1). The coupling is due to the interaction between two successive cars measured by the headway ∆xi =
xi+1 − xi − ℓ (put car length ℓ → 0 for point-like cars). The optimal or desired velocity vopt(∆x) (3) is the
steady–state velocity chosen by drivers as function of the headway between cars. It increases monotoneously
with the distance and tends to a constant maximal value vmax for ∆x → ∞.

Our equations of motion can be written as random dynamical system with multiplicative Gaussian white
noise6

m dvi(t) = Fdet(vi, ∆xi) dt + σ vi dWi(t) (64)

dxi(t) = vi dt (65)



for a point–like particle (vehicle i) of mass m with speed vi(t) at location xi(t). Here Fdet = m (vopt(∆xi)−vi)/τ

is the deterministic force. The fluctuations dWi = Z
√

dt are given by the increment of a Wiener process, where
Z is a N (0, 1) standard normal-distributed random number. By using the dimensionless variables introduced
in (5), the system of equations (64)–(65) becomes

dui(t) = (uopt(∆yi) − ui) dT + a ui dWi(t) (66)

dyi(t) =
1

b
ui dT , (67)

where a = σ
√

τ/m is the dimensionless noise amplitude.

We have solved numerically (simulated) the system of Eqs. (66)–(67) for a finite system of 60 cars at non-
vanishing noise intensity a = 0.1 by an algorithm called explicit 1.5 order strong scheme.14 We have fixed
the dimensionless density of cars c and have varied the parameter b to estimate the value b(c) at which the
transition from free–flow regime to congested traffic occurs. A jump–like increase in the variance of the velocity
var(u) = 〈u2〉 − 〈u〉2 takes place around b = b(c). The noise tends to wash out the phase transition in finite
system we considered, therefore we could not observe a real jump and the value of b(c) has been identified with
the inflection point of the var(u) vs b plot where this curve has the maximal steepness. Moreover, the phase
transition around the critical density ccr =

√
3 becomes too diffuse to identify the location of the transition point.

Due to the fluctuations at a > 0, our system of cars cannot stay unlimitedly long time in a metastable state. It
means that a sufficiently long simulation will give us one line b = b(c) irrespective to the initial conditions rather
than two branches of the phase diagram shown in Fig. 1 (right) for the deterministic case a = 0. Nevertheless,
even at positive a = 0.1 a hysteresis effect has been observed in finite–time sumulations at certain densities, e. g.,
c = 3. The phase diagram in Fig. 6 shows the pieces of b = b(c) curve (dotted line) at a = 0.1 as well as the two
branches with a = 0 for comparison.

0 1 2 3c

1.2

1.3

b

Figure 6. The phase diagram of finite system of N = 60 cars, including the phase transition line (dotted curve) at a
nonvanishing noise intensity a = 0.1. The solid and dashed lines refers to the case a = 0 and have the same meaning as
in Fig. 1.

The idea to use the variance of the velocity u to distinguish between the homogeneous and heterogeneous
states of the system is similar to that applied in Ref. 15, where a closely related quantity, namely, the variance
of the density has been considered in framework of stochastic car following models. Particularly, we expect that
the stochastic Bando model considered here would produce a similar variance plot depending on the density
and noise intensity as does the cellular outomata model dicussed in Ref. 15. The noise, however, can produce
collisions in the model (64) – (65), and they become highly probable at large noise intensities. A modification of
the deterministic part, as proposed in Sec. 2.1.6, is helpful to solve this problem.

We have fixed the noise intensity a = 0.1 and the number of cars N = 60 and have studied the distribution
of vehicular velocities and headway distances depending on the dimensionless car density c and parameter b. In
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Figure 7. The probability density distribution of velocities (left) and headway distances (right) for two different car
densities c = 0.5 and c = 2 at fixed dimensionless noise amplitude a = 0.1 and parameter b = 1.1.

Fig. 7 (left) the velocity distribution function f(u) is shown at b = 1.1 for a relatively small density c = 0.5 as
well as for higher density c = 2. In the first case we have only one maximum located near u = 0.8 which is the
steady state velocity of the homogeneous free traffic flow without noise. The noise only smears out the delta–like
distribution to yield a smooth maximum seen in Fig. 7. The traffic flow is homogeneous with small fluctuations
in velocities and also headway distances, as shown in Fig. 7 (right). The headway–distance distribution function
f(∆y) has a maximum near ∆y = ∆yhom = 1/c = 2 which is the average headway distance in a homogeneous
flow. In the second case (c = 2) the velocity distribution function as well as the headway distribution function
have two maxima. It indicates the coexistence of two phases – free flow with relatively large headways and
velocities and jam with small headways and velocities.
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Figure 8. The probability density distribution of velocities (left) and headway distances (right) in the case of heavy
traffic with large density of cars c = 3.5 (at b = 1.1) and at the critical point c = ccr =

√
3 ≃ 1.73205, b = bcr ≃ 1.29548.

In both cases the dimensionless noise intensity is a = 0.1.

The heavy traffic at c = 3.5, as well as the critical situation at c = ccr and b = bcr are illustrated in Fig. 8
with the same notation as in Fig. 7. In both cases the distributions have only one maximum, as consistent with
the existence of only one phase. A distinguishing feature of the critical point is that the distributions over the
headway distances and velocities are relatively broad.

The simulation of the stochastic equations (64) and (65) in the coexistence region allows us also to find
the probability P (n, t) that just n cars are involved in the jam. In this case the jammed cars are defined as
those vehicles which have the headway distance smaller than the homogeneous one ∆yhom = 1/c. The results
of numerical simulation at c = 2 coincide qualitatively with the investigations of the stochastic master equation
approach developed in.2–6



3. CONCLUSIONS

Although the experimental situation on freeways is rather complex, we believe that some general features of traffic
flow exist which can be described by relatively simple models. Dynamical models for car cluster formation based
on stochastic methods (Master equation, Langevin equation, Fokker–Planck equation) have not been extensively
exploited so far in traffic theory. It was the aim of the present contribution to present a stochastic description
of jam formation using master equation approach. The main and central point is to construct the transition
probabilities for the jump processes to condensate one free car to a car cluster or to evaporate the first congested
car into free flow. This method allows us to interpret the phase transitions between different states of traffic
flow in analogy to aggregation phenomena in metastable and unstable systems like supersaturated van der Waals
gases.
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6. R. Mahnke, R. Kühne, J. Kaupužs, I. Lubashevsky, and R. Remer, Stochastic description of traffic breakdown,
In: Noise in Complex Systems and Stochastic Dynamics, L. Schimansky–Geier, D. Abbott, A. Neiman, Ch.
Van den Broeck, eds., Proc. SPIE 5114, pp. 126–135, 2003.
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