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We study the superfluid transition of “He in aerogel by Monte Carlo simulations and finite size scaling
analysis. Aerogel is a highly porous silica glass, which we model by a diffusion limited cluster
aggregation model. The superfluid is modeled by a three dimensional XY model, with excluded bonds
to sites on the aerogel cluster. We obtain the correlation length exponent » = 0.73 = 0.02, in reasonable
agreement with experiments and with previous simulations. For the heat capacity exponent «, both
experiments and previous simulations suggest deviations from the Josephson hyperscaling relation @ =
2 — dv. In contrast, our Monte Carlo results support hyperscaling with @ = —0.2 = 0.05. We suggest a
reinterpretation of the experiments, which avoids scaling violations and is consistent with our simulation

results.
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Experiments on “He immersed in ultralight aerogel,
forming highly porous fractal structures, have demon-
strated new universality classes of the superfluid phase
transition [1,2]. Striking deviations of the critical expo-
nents from the bulk lambda transition appear to arise due to
fractal correlations in the aerogel, but the details are not
well understood. Furthermore, the new critical exponents
tend to violate common scaling laws, such as the Josephson
hyperscaling relation. A theoretical study of the unusual
scaling properties of the superfluid transition in fractal
random media is motivated in order to better understand
these surprising results.

Experiments on helium in aerogel use ultralight aerogel
samples with a highly porous structure that consists of
silica strands of about 5 nm in diameter and a distance
between neighboring strands of up to 200 nm [2]. The
porosity can be varied in the fabrication process. Small-
angle x-ray scattering indicates a fractal structure extend-
ing from a couple of nanometers up to more than 100 nm
[3]. The superfluid density of the “He has been measured
by a torsional oscillator technique, and the heat capacity by
an ac heating method [2]. The superfluid density was found
to vanish at the transition as a power law p, = polt|¢,
where t =1 —T/T,. and ¢ = 0.79 for m = 5% volume
fraction of aerogel, { = 0.76 for m = 2%, and ¢ = 0.72
for m = 0.5%. These values are significantly greater than
¢ =~ 0.67 found in bulk “*He. The heat capacity has a peak
at T = T, that was fitted to the form C = A.|7|~%* + B,
giving a, # a_. Alternatively, assuming that o, =
a_ = a gives a = —0.57 for m = 5% aerogel, a =
—0.39 for m = 2%, and a = —0.13 for m = 0.5% [2].
Surprisingly, these exponents depend on the aerogel poros-
ity, and deviate considerably from the value obtained from
the Josephson hyperscaling relation, & = 2 — dv, with
d=3and v = (.

The “He transition in aerogel has been studied by com-
puter simulation in Refs. [4,5], and we follow many aspects
of these works. Moon and Girvin [4] studied a three
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dimensional (3D) XY model with aerogel modeled as a
connected percolation fractal cluster with fractal dimen-
sion Dy =~ 2.5. They obtained the expected scaling behav-
ior of the superfluid density, i.e., p, ~ £27¢ with d = 3,
and a correlation length that diverges as & ~ [T — T,|™"
with exponent v = (.722, in agreement with experiments
[2]. However, they did not study the unusual heat capacity
exponents. Vasquez et al. [5] also studied a 3D XY model,
but with aerogel modeled with a diffusion limited cluster
aggregation (DLCA) algorithm, generating a fractal cluster
with dimension D, =~ 1.8 [6]. They find porosity depen-
dent exponents similar to those from the experiments.
Specifically, the heat capacity exponent displays a similar
violation of hyperscaling as obtained from experiments.

In this Letter we study the superfluid transition in aero-
gel by Monte Carlo (MC) simulations and finite size scal-
ing analysis, using a more extensive disorder averaging and
larger system sizes than in previous simulations. In contrast
to results from experiments and earlier simulations, we
obtain critical exponents that are both porosity independent
and obey usual scaling laws. In particular, our MC data is
consistent with the Josephson hyperscaling relation. We
reanalyze the experimental data for the heat capacity from
Ref. [2] in light of our new scaling results, and argue that
the formula C = A.|f|~%* + B used in the previous data
analysis may not directly apply for this problem. We
present an alternative analysis that leads to consistency
between experiments and our simulation results.

DLCA model. —Following Ref. [5], we model the aero-
gel using a DLCA algorithm [7,8]. We consider a simple
cubic lattice with L X L X L sites and periodic boundary
conditions in all directions. As a first step mL> ““particles”
are distributed on random lattice sites, where m is the
volume fraction of the aerogel. Particles on nearest neigh-
bor lattice sites form clusters, whose structure is kept fixed.
Clusters are allowed to diffuse by rigid translations, using
an iterative DLCA algorithm [9]. If two clusters meet they
connect irreversibly and form a larger cluster. The iteration
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continues until a single cluster remains, which is used to
model the aerogel, and plays the role of correlated disorder
for the helium. The aerogel volume fractions considered
here are m = 5% and m = 10%.

3D XY model.—The universal properties of the super-
fluid transition of “He are captured by the 3D XY model
given by

H= —ZJ,-J- cos(6; — 6,), (D)
(i)

where (i, j) denotes nearest neighbor sites. The coupling
constant J;; is set to J = 1 between pairs of “He sites, and
J =0 if one or both lattice sites belong to the DLCA
cluster. The excluded bonds act like quenched disorder
for the 3D XY model, and 6; is the phase of the superfluid
order parameter at site i occupied by helium.

Monte Carlo simulations.—Our MC simulations use the
collective Wolff update method [10], combined with the
temperature exchange method [11], which reduces critical
slowing down of the simulation. An exchange update
attempt was performed after every ten Wolff cluster up-
dates. For each random bond realization we discard be-
tween 2 X 10* and 2 X 10° Wolff clusters to approach
equilibrium, depending on system size, followed by the
same number of updates collecting data. In the temperature
exchange method we simulate a set of different tempera-
tures in parallel, and allow MC moves exchanging the
temperatures between the different configurations. The
results were averaged over 5 X 10° DLCA clusters for L =
50, and for 2.5 X 10% clusters for L = 60. We carefully
checked for convergence of the simulation by increasing
the number of initial discarded update steps until stable
results were obtained.

Calculated quantities and finite size scaling relations. —
The superfluid density p, is proportional to the helicity
modulus Y, which gives the increase in free energy density
as Af = 1YA? in the presence of a uniform phase twist A
imposed across the system, here taken in the x direction
[12]. The helicity modulus is then given by [13]

Y(T,L) = %K-ZJ; cos(645 — gj)ﬂ
- LTIT |:<<§Jj‘ Sin(0j+éx — 9}.)>2>}

where J = J;,; ;. Here (- - ) denotes the thermal aver-

age, and [ - - -] denotes the average taken over different
realizations of DLCA clusters.

In order to analyze MC data for finite systems of size L?,
we start from the finite size scaling relation for the singular
part of the free energy density, f,/T = L™f.(L/&),
where d = 3, f + are scaling functions, and & ~ |T —
T.|”" is the correlation length [14]. The corresponding
scaling result for a phase gradient is A = L™1A,(L/&).
The helicity modulus becomes Y ~ L4 or, alternatively,

2)

Y~ |T —T.¢ [12] with { = (d —2)v. For d =3 the
finite size scaling relation becomes [4]

LY/T = (1 + aL=®)Y(LY"¢), 3)

where Y is a scaling function to be determined below from
MC data,and t = T — T,. The term aL™“ is an amplitude
correction to scaling that will be discussed below [15].

The Josephson hyperscaling relation for the heat ca-
pacity exponent, « =2 — dv, follows from ¢~
0%f,/0T? ~ 9%t%" /91> ~ t=2 =t~ [14]. The heat ca-
pacity is given by ¢ = [(H?) — (H)*]/(L?T?), and the
finite size scaling relation is [16]

c=L"&LY"1) + b, “)

where b represents the nonsingular, analytic contribution
to the heat capacity, which depends on temperature but not
system size. Since we focus on a narrow temperature
interval around the transition, we take b to be constant.
Alternatively, the scaling function can be determined di-
rectly by eliminating b:

C()C, Ll) - C()C, LZ)

c(x) = Lf/” -

L 5)
where x is the scaling variable LY"tand L,, L, denote two
different system sizes. These two formulas gave the same
results for the critical exponents.

Results.—Figure 1 shows MC data for the heat capacity
¢ (main figure) and the dimensionless helicity modulus
LY/T (inset) vs temperature T for a set of different system
sizes L for an aerogel volume fraction of m = 5%.
According to the scaling relation Eq. (3), the dominant L
dependence for the helicity modulus at T = T, is Y ~ L™,
showing that the superfluid transition temperature 7, is
where all data curves for LY /T for different system sizes
L intersect. However, a close examination of the data
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FIG. 1 (color online). MC data for the heat capacity ¢ (main
figure) and the dimensionless helicity modulus LY /T (inset) as a
function of temperature T for different system sizes L, with m =
5% aerogel volume fraction.

225702-2



PRL 97, 225702 (2006)

PHYSICAL REVIEW LETTERS

week ending
1 DECEMBER 2006

curves for Y in Fig. 1 reveals a small systematic drift in the
intersection temperatures between successive pairs of sys-
tem sizes, which complicates an accurate determination of
T.. The drift can be included in the scaling analysis by
assuming an amplitude correction to scaling of the form
included above in Eq. (3). We found that varying w in the
interval from 0.6 to 1 leads to practically indistinguishable
fits to the MC data, with nearly the same values for the
other exponents. The precision of our MC data is not
enough for a more accurate estimate of w, and the results
shown below are for the choice w = 1. For the heat ca-
pacity no correction to scaling was found to be necessary.

The following method produces a finite size data col-
lapse of MC data for the helicity modulus by fitting to
Eq. (3). The x? value of the fit is obtained as x> =
(1/n)Y i~ [dx[¥;(x) = ¥ ;(x)]?, where i, j refer to n pairs
of system sizes L;, L;. The integrals are evaluated using
cubic spline interpolation at 20 evenly spaced points within
the x interval in which the pair of functions in the integrand
overlap. The fit parameters are determined by minimizing
x> over a fine multidimensional grid of values, whose
resolution is finer than the error estimates on the parame-
ters. Data points at small values of Y with poor statistics are
excluded from the fits. A similar procedure is used to fit
Eq. (4) to the heat capacity data. We tried both independent
scaling fits for Y and ¢, and joint fits to scale both quantities
simultaneously, which we found to be more stable.

To determine the critical exponents v and o we attempt
some different approaches. We first assume that the hyper-
scaling relation « = 2 — dv is valid, which leaves the fit
parameters 7., v, a, b. The result of joint fits of Egs. (3)
and (4) to MC data is shown in Fig. 2 for m = 5%. As seen
in the figure the fit produces good data collapses both for Y
and for c¢. The fit parameters for m = 5% are: T, =
2.1385 = 0.0005, » = 0.73 £0.02, a = —1.9, b = 2.85,
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FIG. 2 (color online). Finite size scaling data collapses of MC
data showing the scaling functions for the helicity modulus Y
and the heat capacity ¢ for m = 5%. The data collapses giving
the scaling functions are obtained from a joint fit to Eqs. (3) and
(4) for system sizes L = 20, assuming that « is given by the
hyperscaling relation & = 2 — dv.

and for m = 10% (data not shown): T, = 2.0450 =
0.0005, v =0.73 £0.02, a = —2.0, b = 2.6. Error bars
are estimated from the variation in the parameter values
upon varying the range of system sizes included in the fits.
We observe a slight tendency for the exponents to drift
towards the 3D XY results upon increasing the system sizes
included in the scaling fits, but larger system sizes would
be required to study this effect further. The values of 7. are
close to the value 7, = 2.203 for the pure 3D XY model,
which is expected since the DLCA cluster fills only a tiny
fraction of the entire system volume. The values of v for
5% and 10% aerogel closely agree with each other, and we
get the corresponding heat capacity exponent o =
2 — 3y = —0.20 = 0.05, independent of the aerogel po-
rosity. We also tried joint scaling fits without assuming the
hyperscaling relation for «, but instead treating » and « as
independent fit parameters, with similar results. On the
other hand, using the parameter values suggested by the
experiments [2] gives a good fit to the helicity modulus, but
a very poor fit to the heat capacity data. Thus, from fits to
our MC data we conclude that the exponents are porosity
independent and obey hyperscaling, in contrast to sugges-
tions in Refs. [2,5].

Comparison with experiments.—Here we compare our
critical exponents to the experimental results in Ref. [2].
Our scaling of the helicity modulus gives the correlation
length exponent v = 0.73, which compares quite well with
the experimental values v = 0.72-0.79 from torsional os-
cillator measurements of the superfluid density. However

our heat capacity exponent o = —(.20 is far from the
experimental values a = —0.39 for m = 2% aerogel,
and @ = —0.57 for m = 5%. These results are clearly
incompatible.

We now argue that our scaling results can actually
describe the universal scaling function probed by the ex-
periment. However, we also suggest that the experimental
data contain nonuniversal features that must be included in
the data analyses as well. We first assume the presence of a
finite cutoff length scale in the experimental system.
Figure 3 of Ref. [2] shows that the data for the *He
transition without any aerogel produces a sharp lambda
curve. However, the presence of the aerogel seems to
slightly round off the maximum of the heat capacity
curves, compared to the sharp peak predicted by the for-
mula ¢~ |T —T.|7% Rounding of the experimental
curves therefore seems to be caused by the presence of
the aerogel, and suggests a finite length scale that may be
associated with the typical aerogel pore size.

Further, we argue that the temperature dependence of
the superfluid condensate amplitude may contribute to the
observed asymmetry of the experimental heat capacity
curves around 7. The fit presented in Ref. [2] to extract
a from experiments assumes that only the singular ¢ ~
|T — T.|~“ dependence on T is observed. We propose that
this might be too restrictive in cases when « is negative,
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FIG. 3 (color online). Experimental data of the heat capacity
for three aerogel volume fractions, 0.5%, 2%, and 5%, repro-
duced from Ref. [2] (curves with symbols), together with fits to

the scaling function (thick curves) given by Eq. (6).

since the singular temperature dependence does not clearly
dominate the temperature variation as when « = (0. We
include the regular temperature dependence of the ampli-
tude by a linear approximation of the form A = Ay + AT,
where Aj, A, are constants [17]. This gives

o(T) = (Ag + A\ TILY"E[LV(T = T)] + b}, (6)

where the scaling function ¢ is determined in Fig. 2. To fit
Eq. (6) to experiments we assume a = —0.20, v = 0.73
and use L, b, Ay, A; as fit parameters. The results of the fits
are shown in Fig. 3. The fit parameters are: m = 5%: L =
835, b =5.03, Ag = 13592, A| = —6150; m = 2%: L =
1107, b = 2.84, Ag = 65914, A; = —30098; m = 0.5%:
L =1900, b =1.98, Ay = 193062, A; = —88428. We
thus obtain quite good agreement in a narrow interval
around the transition between the experiment of Ref. [2]
and a fit to the simulated scaling function, which fulfills
hyperscaling. The 5% data curve shows a slight deviation
between theory and experiment on the high temperature
side of the transition in Fig. 3. This deviation occurs away
from the transition temperature, where additional tempera-
ture dependencies are expected. Note that the cutoff length
depends roughly as L ~ 1/m'/3, which is compatible with
the interpretation as a crossover related to the typical pore
diameter in the aerogel.

Discussion.—From our finite size scaling analysis of
MC data for the 3D XY model in aerogel modeled as
DLCA clusters, we obtain a correlation length exponent
v = (.73. This supports the previous conclusion [4,5] that
the universality class of the phase transition in the presence
of DLCA clusters deviates from the pure 3D XY universal-

ity class, where v = 0.671 [15], even though the possibility
of a slow crossover towards the pure 3D XY universality
class cannot entirely be ruled out. In contrast to previous
results in the literature [2,5], our results suggest that the
critical exponents are independent of porosity and obey the
Josephson hyperscaling relation & =2 — dv, within the
statistical uncertainty of the MC data. We argue that the
formula ¢ = A |T — T,.|"%+ + B, used to analyze experi-
ments in Ref. [2] is not directly applicable in this case. We
propose an alternative analysis procedure based on our
simulation result to fit the experimental heat capacity
data at the transition. This fit assumes that the experiment
contains signatures of a finite crossover length scale, pre-
sumably related to the typical aerogel pore size, and of a
temperature dependent superfluid condensate amplitude.
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