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We have studied the nonlinear current-voltage characteristic of a two-dimensional lattice Coulomb gas by
Monte Carlo simulation. We present three different determinations of the power-law exponenta(T) of the
nonlinear current-voltage characteristic,V;I a(T)11. The determinations rely on both equilibrium and nonequi-
librium simulations. We find good agreement between the different determinations, and our results also agree
closely with experimental results for Hg-Xe thin-film superconductors and for certain single crystal thin-film
high-temperature superconductors.

I. INTRODUCTION

In two dimensions the superconducting transition in zero
magnetic field is a Kosterlitz-Thouless transition.1–3This has
been verified over the years in both experiments4 and in
many models of superconductors like theXY, Villain, and
Coulomb gas models.1,5,6 The important degrees of freedom
in a system undergoing a Kosterlitz-Thouless transition are
thermally excited vortex pairs. The Kosterlitz-Thouless tran-
sition is sometimes also referred to as a vortex unbinding
transition, as for temperatures below the transition tempera-
ture Tc all vortices are bound in neutral pairs. These pairs
start to unbind at and aboveTc .

A typical way to look for a Kosterlitz-Thouless transition
in experiments on thin superconducting films is to probe the
current-voltage (IV) characteristic.4,7,8 Both the linear and
the nonlinearIV characteristics have specific fingerprints
identifying a Kosterlitz-Thouless transition. Vortices deter-
mine the IV characteristic for the following reasons: If a
vortex is dragged across the system a voltage is induced.
Hence resistance is zero only if there are no vortices avail-
able to move across the system, and only then the system is
truly superconducting. Vortices that are bound in neutral
pairs are unable to move freely and to cause dissipation.
However an external applied in-plane supercurrent yields a
perpendicular Lorentz force acting in opposite direction on
vortices with different vorticity. This gives a net flux of vor-
tices across the system, which shows up as nonlinear~i.e.,
current-dependent! resistance.

Below the Kosterlitz-Thouless transition temperature all
vortices are bound in neutral pairs by the logarithmic vortex
interaction, and the linear resistance is thus zero. Therefore
the system superconducts below the Kosterlitz-Thouless
transition. The linear resistance drops to zero at the
Kosterlitz-Thouless transition with an exponential functional
form, R;j22 with lnj;uT2Tcu21/2.3 This is consistent with

experiments, although the logarithm is a complication for
quantitative comparison between theory and experiment. A
finite applied current gives a power-law nonlinearIV char-
acteristic of the formV;I a(T)11. The critical current is thus
zero. At the Kosterlitz-Thouless transition theIV exponent
a(T) assumes the universal value 2, soV;I 3 at T5Tc . For
T,Tc one hasa(T).2, and forT.Tc one hasa(T)50 ~for
small enough currents!.9 Experiments on, for example, thin
Hg-Xe alloy films4 and also for certain single-crystal high-
temperature superconductors,7,8 among some, have con-
firmed this.

SinceIV characteristics are hard to calculate analytically
computer simulation is a useful tool.IV characteristics of
vortex systems have recently been calculated successfully
with Monte Carlo simulations.10 Linear and nonlinearIV
characteristics of vortex glass superconductors have been re-
ported in Refs. 10 and 11. In a recent Monte Carlo simulation
of the Coulomb gas the linear resistance was used to locate
the Kosterlitz-Thouless transition.12 The nonlinearIV char-
acteristics at the Kosterlitz-Thouless transition has been cal-
culated in Ref. 13, and a finite-size scaling analysis accu-
rately verified the relationV;I 3 at the Kosterlitz-Thouless
transition.

In this paper we study theIV characteristics of a lattice
Coulomb gas model by Monte Carlo simulations of vortex
dynamics. We calculate theIV exponenta(T) of the Cou-
lomb gas in three different ways:~1! By direct Monte Carlo
calculation of the nonlinear resistance,~2! by a self-
consistent linear screening construction for the energy barrier
for current induced vortex-pair breaking giving thermally ac-
tivated resistance, and~3! by a finite scaling construction
from data for the linear resistance. All methods are based on
Monte Carlo simulations, and we apply both equilibrium and
nonequilibrium simulations. These three methods give the
same results, giving us a consistent and simple picture of
nonequilibrium response in this system. Furthermore, we
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compare our results fora(T) with experiments. Scaling ar-
guments give thata(T) is a universal scaling function of a
reduced Coulomb gas temperatureX5T/Tc , and this is veri-
fied in experiments.3 We find close agreement between our
Monte Carlo results and the experimental universal scaling
curve. The agreement between different methods, and be-
tween our simulations and experiments, are the main results
of our paper. Some of our Monte Carlo results for the non-
linear IV characteristics have been obtained previously,13 as
explained above.

The paper is organized as follows: In Sec. II we define the
lattice Coulomb gas model. In Sec. III we study various ap-
proaches to theIV characteristics. In Sec. IV we describe our
Monte Carlo methods for calculatingIV characteristics. In
Sec. V we present the Monte Carlo results. Section VI con-
tains discussion and conclusions.

II. LATTICE COULOMB GAS

A useful starting point for calculations with superconduct-
ors in the presense of currents and fields is the Ginsburg-
Landau model, with the order parameter
C(r )5uC(r )ueif(r ) describing the superconducting order of
the system. However, this model does not focus particularly
on vortex degrees of freedom. The vortices constitute the
essential degrees of freedom near the Kosterlitz-Thouless
transition. An approximation to the Ginsburg-Landau model
which focuses only on the vortices is given by the Coulomb
gas model. Here thermal fluctuations in the magnitude of
C are neglected, since they are relevant only close to the
mean-field transition temperature, which is assumed to be
well above the vortex transition temperatureTc . In our
simulations the model is discretized and put on a lattice. The
approximation made in the lattice discretization will only
affect the short-range behavior of the vortices, as the lattice
defines the smallest possible separation. The critical proper-
ties will however not be effected. In general, large length
scale properties should be reasonable modeled by the lattice
Coulomb gas close toTc .

The lattice Coulomb gas14,15 is defined by the partition
functionZ on a square lattice of side lengthL using periodic
boundary conditions:

Z5 Trnexp@2b~H2mN!#, ~1!

H5
1

2(i , j niGi j nj , ~2!

N5(
i

uni u, ~3!

whereH is the Hamiltonian,ni is the vorticity at sitei ~Cou-
lomb gas charge!, m52Ec is the vortex ‘‘chemical poten-
tial’’ and Ec is the vortex core energy, andT51/b is the
Coulomb gas temperature.3 The trace is overni50,61 on all
sitesi , subject to overall neutrality,( ini50.Gi j is the lattice
Green’s function for the logarithmic two-dimensional~2D!
vortex interaction,

Gi j5
1

L2(k
peik–~r i2r j !

22cos~kx!2cos~ky!
, ~4!

where k are the reciprocal-lattice vectors,
kx ,ky52pn/L,n50, . . . ,L21.

We will calculate the response voltage to an applied cur-
rent imposed on the Coulomb gas. The above definition does
not include any net currents. How to include them and to
calculateIV characteristics by Monte Carlo simulation is de-
scribed in the next section.

III. CURRENT-VOLTAGE CHARACTERISTICS

In this section we discuss various aspects and approaches
to the current-voltage characteristics of 2D superconductors
close to the Kosterlitz-Thouless transition.

A. Linear resistance

A basic experiment on a superconductor is to measure the
linear resistance. Such measurements on thin films of both
conventional low-Tc superconductors4 and single-crystal
high-Tc materials,7,8 have been successfully interpreted in
terms of thermally excited vortex fluctuations analyzed by
use of the Coulomb gas.3

The linear resistivity is defined byr5E/ j for j→0,
where j is the applied supercurrent density andE is the
resulting induced electric field. Some words about notation:
Since resistance and resistivity have the same dimension in
two dimensions and our system is homogeneous, they are the
same, and they we will both be denoted byR. R will be
reserved for linear resistance, and will not be used to denote
nonlinear resistance. An applied supercurrent is denoted by
I5 jL , and voltage isV5EL.

To determine the linear resistance in simulations of the
Coulomb gas fromE/ j for small j has its limitations, as we
have to repeat the calculation at a sequence of current den-
sities j , to make sure thatj is small enough to be in the
linear regime. If the purpose is to measure only the linear
resistance, and notE as function ofj , a different approach is
to use the Nyquist formula,16 which relates the linear resis-
tance to the equilibrium voltage fluctuations:

R5
1

2TE2`

1`

dt^V~ t !V~0!&, ~5!

whereV(t) is the induced voltage from vortex motion at
time t. As an alternative to Eq.~5! the Kubo formula for the
vortex currentsI v , R51/2T*2`

` dt^I v(t)I v(0)& can be used.
Given the Josephson relation we see immediately that the
Kubo formula equals the Nyquist relation.

The linear resistance has been successfully used in a
simulation12 to locate the Kosterlitz-Thouless transition tem-
peratureTc of the 2D lattice Coulomb gas. They find the
finite-size scaling relation atTc :

L2RS 11
1

4ln~L !1CD5const atT5Tc , ~6!

to be valid to a very high precision.
The scaling relation Eq.~6! was derived from the follow-

ing argument. We assume the dynamical exponentz52 for
free vortex diffusion in two dimensions.13,17The linear resis-
tance is a dynamical quantity, it relates to the correlation
time t, which at Tc diverges liket;jz, where j is the
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correlation length. According to the Josephson relation the
voltageV;dDf/dt;t21, whereDf is the gradient of the
phase of the Ginsburg-Landau order parameter.18 Therefore,
we expect the linear resistance, Eq.~5!, to scale like
R;j22 at Tc . At Tc the correlation length diverges and is
cut of by the finite sizeL of the lattice and henceRL25
const atTc , to lowest order. The scaling relation has a loga-
rithmic correction which has been included in Eq.~6!. This
correction is readily obtained from the corresponding correc-
tion terms for 1/e andl.19

B. Thermally activated resistance

The above scaling argument led to a finite-size scaling
formula which is useful for locating the transition tempera-
ture from Monte Carlo data for the resistance of finite
samples. Here we will do a more detailed analysis that will
also lead to the same formula. The analysis here does not
directly involve scaling arguments, but considers the interac-
tions between vortices in the Coulomb gas. The analysis will
give expressions for the resistance from thermally activated
free vortices in the Coulomb gas in the presence of an ap-
plied supercurrent. This more detailed analysis will be useful
in later sections when we analyze Monte Carlo data for the
Coulomb gas.

According to the Josephson relation the voltageV caused
by vortex motion is

V;
dDf

dt
;nFI ,

where we assume that the resistance is proportional to the
density of ‘‘free’’ vortices,nF , defined by the the Debye-
Hückel relation. The linear resistanceR is defined by the
limit of zero currentI :

R5 lim
I→0

V

I
;nF . ~7!

To make an estimate of the density of free vortices we pro-
ceed by the following simple model. The energyE(r ) of a
vortex pair of separationr.r 0 in the presence of a current
I is17

E~r !5E01E1lnS rr 0D2I ~r2r 0!, ~8!

whereE0 is a constant,E1 is discussed below andr 0 is the
smallest possible separation, which we will set tor 051 from
now.

We will now use the linear screening approximation3 to
derive an expression for the second termE1lnr in Eq. ~8!.
The expression is obtained from the Fourier transform of the
linearly screened potentialVl(k),

Vl~k!52
1

ẽ~k!

2p

k21l22 .

Herel is the vortex screening length, andẽ(k) is the part of
the dielectric function,e(k), describing the polarization of
the bound pairs. The twoe are related by

1

e~k!
5

1

ẽ~k!

k2

k21l22 .

In the limit l→` the two different dielectric functions be-
come equal. This is the case for temperatures belowTc . The
dielectric function, 1/e(k), is obtained from the charge fluc-
tuations below in Eq.~24!. The real-space expression for
E(r ) is obtained from

E~r !5 lim
l→`

Vl~r !,

where

Vl~r !5E dk

2p
2Vl~k!eik•r.

We can obtain an approximate expression forVl(r ) by mak-
ing use of the fact thatẽ(k) only depends weakly~in most of
k space! on k. For a given distancer , the Fourier integral
picks up its main contribution from thek values around
2p/r . Hence

Vl~r !2Vl~r51!'2
1

ẽ~k52p/r !
K0~r /l!.

Here we have subtractedVl(r51) in order to eliminate the
creation energy.K0 denotes a modified Bessel function. As
l→` this expression reduces to

Vl~r !2Vl~r51!'
1

e~2p/r !
ln~r /l!, ~9!

where we usee instead ofẽ, as the temperature is below
Tc .

According to this discussion the coefficientE1 is given
by20

E15
1

e~2p/r !
. ~10!

The weakr dependence describes the effect of the surround-
ing vortex pairs. The coefficientE0 contains the remaining
constant terms from Eq.~9!. In a first approximation we will
neglect ther dependence inE1 .

The energyE(r ) in Eq. ~8! has a maximum at separation
r *5E1 /I and the energy needed to separate a vortex pair to
this distance is4

DE5E~r * !2E~r51!5E1ln~r * !2I ~r *21!, ~11!

DE5E1lnSE1

I D2E11I . ~12!

Let G denote the thermal production rate of free vortices.
A vortex vanishes when it collides with an antivortex. Hence,
it appears reasonable to assume an annihilation rate propor-
tional tonF

2 . This leads to the following rate equation:

ṅF5G2cnF
2 . ~13!

8568 53HANS WEBER, MATS WALLIN, AND HENRIK JELDTOFT JENSEN



Wherec is a constant. The steady-state condition isṅF50
and hence we haveG}AnF. Assuming thatG is determined
by activation over the barrierDE we get the following pro-
duction rate:17

G}e2DE/T ~14!

and hence for the resistanceR from Eq. ~7!,

R}nF}e2DE/2T}expH 2
1

2T FE1lnSE1

I D2E11I G J
} KE1

I L 2E1/2T

eE1/2Te2I /2T.

Keeping the important term for small but finiteI we arrive at

R} KE1

I L 2E1/2T

. ~15!

A given currentI gives rise to a ‘‘current length scale’’r *
from the maximum condition in Eq.~8!. As the lattice of the
system has a finite size, this sets an upper limit to the ‘‘cur-
rent length’’ and hence a lower limit to the current producing
nonlinear resistance. The smallest current giving nonlinear
resistance isI *5E1 /r * with r *5L and hence for currents
smaller thanI * the resistance will be cut off by the finite size
L of the lattice and the resistance becomes Ohmic. The Ny-
quist resistance is calculated withI50 and hence

R} K 1L L 2E1/2T

. ~16!

This means that we can scale the linear resistanceR from
the Nyquist relation Eq.~5! with the exponentE1/2T. This
exponent is preciselya(T), the exponent of the nonlinear
IV characteristics@see Eq.~18! below#, hence

f ~T!5RLa~T! ~17!

should collapse onto a single curve for different lattice sizes
L. I.e., f (T) should not depend on lattice sizeL. The resis-
tance we use for this scaling will be the one determined from
the voltage fluctuations Eq.~5!. The exponent determined
from resistance data at zero current will be denotedaR(T).

C. Nonlinear IV exponent

We are going to make use of a couple of different expres-
sions for the power-law exponenta(T) of the nonlinearIV
characteristics. From Eq.~15! we get the nonlinearIV char-
acteristic,

V} KE1

I L 2E1/2T

I}I a~T!11. ~18!

The exponent calculated by monitoring the voltage response
V as a function of an applied supercurrentI will be denoted
aIV(T). On a finite system we will obtain a nonlinear voltage
response only above a finite applied current, given by
I *;E1 /L, such that the current lengthr * is shorter than the
sizeL of the system, as discussed above.

D. Self-consistentIV characteristic

Another expression for theIV characteristic is obtained if
we include ther dependence inE1 in Eq. ~10!. The length
dependence can in a first approximation@in an expansion in
derivatives ofE1(r )# be included simply by replacingE1 in
Eq. ~15! by 1/e(2p/r * ) in the extremum equation
I5E1 /r * . Our rationale for this choice is that at the separa-
tion r * the vortex pair is broken apart and we therefore use
the stiffness 1/e(r ) of the system at this separation. We find
the appropriatee(r ) by solving self-consistently the equation

I5
1

e~2p/r * !r *
5

k*

e~k* !2p
. ~19!

The self-consistente obtained by solving Eq.~19! will be
denotede* . The relation between the exponenta(T) and the
dielectric functionẽ is according to Eqs.~15! and~10! given
by the expression~see Ambegoakaret al.17!

a~T!AHNS5
1

2Te*
; ~20!

here we usee* as we are at temperatures belowTc .
Recently Minnhagenet al.have used scaling arguments to

derive an alternative relationship betweena(T) ande, given
by21

a~T!PM5
1

Te*
22 . ~21!

As one immediately realizes Eq.~21! is not consistent with
the activation argument used to derive Eq.~20!. In order to
reconcile Eq.~21! with a rate equation like Eq.~13! Min-
nhagenet al.. have made the following suggestion. They as-
sume that the activation is correctly represented byG in Eq.
~14!. The recombination, which in Eq.~13! is represented by
the innocently looking termnF

2 , is on the other hand sup-
posed to be replaced bynF

11b with b52/(E1 /T22). The
sole argument for this replacement is unfortunately so far
simply the observation that one then can derive Eq.~21!
from an equation like Eq.~13!. Nonetheless, we shall see
below that for temperatures belowTc Eq. ~21! fits the simu-
lation data much better than Eq.~20! does. However a mo-
tivation for a recombination term different from the one in
Eq. ~13! has not been presented. AtTc both relations repro-
duce the same exponenta(T5Tc)52.

IV. MONTE CARLO SIMULATION

In this section we describe how we calculate current-
voltage characteristics by Monte Carlo simulation of the lat-
tice Coulomb gas. The algorithm to simulate the lattice Cou-
lomb gas works as follows:15 First we pick a nearest-
neighbor pair (i , j ) of lattice sites at random. Then we try to
increaseni by one and to decreasenj by one, thus preserving
overall vortex neutrality,( ini50. This Monte Carlo move of
inserting a neutral pair will be interpreted as transfer of one
unit vortex from sitej to i . If the energy change isDE we
accept this trial move according to the standard Metropolis
algorithm22 with probability exp(2DE/T). These simple
Monte Carlo moves can both create, annihilate, and move
vortices. Thermodynamic averages are computed as Monte
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Carlo time averages over the sequence of generated configu-
rations.

To calculateIV characteristics works as follows:10,11 An
applied current densityj gives a Lorentz force ofjh/(2e) on
a unit vortex. The Lorentz force can be incorporated in the
Monte Carlo moves10 by adding to DE an extra term
jh/(2e) if the unit vortex moves in the direction opposite to
the Lorentz force, subtracting this term if it moves in the
same direction, and making no change inDE if it moves in a
perpendicular direction. Biasing the Monte Carlo moves in
this way takes the system out of equilibrium and causes a net
flux of vortices in a direction perpendicular to the current.
This generates a voltage given by the Josephson relation:

V5
h

2e
^I v~ t !&, ~22!

where I v(t) is the vortex current. Heret denotes Monte
Carlo time, incremented bydt after each attempted move.
The vortex current isI v(t)511/LDt if a unit vortex moves
one lattice spacing in the direction of the Lorentz force at
time t, and I v(t)50 otherwise. We use units such that
Dt51/L2 so that an attempt is made to move a vortex on
each lattice site, on average, per unit time. We also use units
such thath/(2e)51.

The linear resistance can also be obtained from the Ny-
quist relation in Eq.~5! for equilibrium voltage fluctuations
in the absence of any net currents. For discrete Monte Carlo
time it is given by,16,23 in our units,

R5
1

2T (
t52t

t

Dt^V~ t !V~0!&. ~23!

The cutoff timet is set to 1000 time steps, this has proved to
be sufficient asR saturates for values oft less than 100 time
steps.

The underlying assumption in using Monte Carlo dynam-
ics to calculateIV characteristics is that Monte Carlo time
can be equated with real time. This approximation has
proven reasonable in other simulations of vortex
dynamics.10,11,13It should be good near a critical point where
vortex motion is slow and overdamped, but not so satisfac-
tory at high temperatures or currents where the discreteness
of Monte Carlo time becomes visible as a saturation of vor-
tex velocities. We get strong support for this assumption
from the results in the next section since we can reproduce
the expectedIV characteristic at the Kosterlitz-Thouless
transition, and since we come close to experiments. One can,
in principle, also test this by comparison to dynamics simu-
lations where time evolution equations are integrated.24

In the equilibrium simulations in the case of no net cur-
rents we typically use 1062107 Monte Carlo sweeps~one
sweep means one Monte Carlo time step defined above, i.e.,
L3L attempts to insert nearest-neighbor pairs!, and in the
nonequilibrium case of an applied current we typically use
1052106 Monte Carlo sweeps. In the evaluation of the Ny-
quist formula for the linear resistance, Eq.~5!, we typically
sum over 1032104 time steps.

The first task for our simulations is to locate the
Kosterlitz-Thouless transition temperatureTc . The usual

universal jump criterion for a Kosterlitz-Thouless transition
involves the dielectric response function 1/e, given by

1

e~k!
512

2p

k2TL2
^nkn2k&, ~24!

nk5(
r i

nie
2 ik–r i, ~25!

wherenk is the Fourier transform of the vortex density. The
limit k→0 denoted 1/e(k50), corresponds to the fully
renormalized long-wavelength superfluid density, and the
universal jump criterion tells us that 1/e(k50) jumps from
4Tc at T5Tc

2 to 0 at T5Tc
1 .9 A practical difficulty for

locatingTc from Monte Carlo data on small lattices with this
procedure is that extrapolation to thek50 limit requires
large lattices, as the smallest nonzerok is 2p/L. The corre-
sponding quantity to 1/e(k50) in the two-dimensionalXY
model is called the helicity modulusg.5 Both quantities have
been used to locate the Kosterlitz-Thouless transition tem-
perature in Monte Carlo calculations.5,25,19

In the data analysis in the next section we use an alterna-
tive procedure to locateTc from the linear resistance.12 We
obtain the linear resistanceR from the Nyquist formula in
Eq. ~5! for a sequence of system sizesL and temperatures
T. According to Eq.~6! data forL2R for different system
sizes should become system size independent at the critical
temperature, which is our criterion to locateTc . This cir-
cumvents the difficulties of using 1/e(k50). The two deter-
minations give within error bars the same value forTc .

V. RESULTS

We present Monte Carlo simulation results for three dif-
ferent determinations of theIV exponenta(T) for the 2D
Coulomb gas model. The results we show here are for the
chemical potentialm50.0 and lattice sizeL532 if not dif-
ferently stated.

A. Nonlinear IV exponent

Our first method consists in a direct measurement of the
electric fieldE induced by an applied current densityj . In
Fig. 1~a! results for the IV characteristic of the two-
dimensional Coulomb gas are shown. The dashed line in the
ln(E) versus ln(j) plot has slope three and represents the
slope atT5Tc according to the universal jump condition.9

The solid curves represent results for different temperatures.
For very high current the voltage response saturates. This is
because when all attempts to move the vortices in the direc-
tion of the Lorentz force are already accepted, further in-
creasing the current cannot give more voltage. For low
enough current there is a crossover to Ohmic resistance,
when the current length equals the system size, and the non-
linear dependence of the resistance on the current vanishes.
The regime where we probe the nonlinearIV characteristic is
for this figure approximately from lnj'21.5 up to'20.5.
According to the Kosterlitz-Thouless theory the slope of the
lines should be 3 at the critical temperature, and this criteria
can be used to determineTc . We will however use an inde-
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pendent determination12 of Tc for this system, based on the
finite-size scaling relation Eq.~6!.

In Fig. 1~b! we demonstrate the effects of the finite lattice
size for low driving currents at temperatures belowTc . The
data shown are forT50.15 and lattice sizes areL58 ~tri-
angles!, 12 ~open squares!, 16 ~stars!, 24 ~open circles!, and
32 ~filled circles!.

The finite-size effects for the lower temperatures can be
understood in the following way.@See the discussion above
following Eq. ~15!.# The finite lattice size is important be-
cause pair excitation over the barrier given by the periodicity
lengthL will add to the dissipation due to unbinding of pairs
over the barrier given by the pair sizer * . The induced elec-
tric field will accordingly be of the form

E5R~L ! j1constj E1/2T11, ~26!

where the first termR(L) follows from Eq. ~16! and
R(L)→0 asL→`. The second term in Eq.~26! is given by
Eq. ~15! and will remain finite in the limitL→`. This is
clearly demonstrated in Fig. 1~b! where we see that the
crossover in Eq.~26! between the linear and nonlinear re-
gime appears at a higher driving current for the smaller
838 lattice as the current length (E1 /I5j I;L) associated
with the current densityj exceeds the size of the lattice.

In Fig. 2 the exponentaIV(X) is shown as a function of
the reduced temperatureX5T/Tc . The dashed horizontal
line represents the universal jump condition foraIV(X). The
plusses represent experimental data from a superconducting
Hg-Xe film.4,26 The filled circles are the results foraIV(T)
from Fig. 1. The other three data sets are for lattice sizes
L516 ~stars!, 24 ~open circles!, and 48~triangles!. As one
can see there are no apparent finite-size effects in the data. In
the vicinity of the critical temperature the experimental data
are reproduced by the Monte Carlo simulations.

The reduced temperature variableX used in Fig. 2 for the
experiment is also from Ref. 26 and for the lattice Coulomb
gas data we useTc50.218,12 determined from a finite-size
scaling analysis using Eq.~6!.

The inset in Fig. 2 shows a selection of experimental data
analyzed along the lines described in Ref. 26. The data in the
inset ~plusses! are the same as in the main figure, the other
data are for Bi2Sr2CaCu2Ox single crystal~filled squares!,

7

and for Bi1.6Pb0.4Sr2Ca2Cu3Ox single crystal ~open
squares!.8

FIG. 1. Monte Carlo results for the nonlinearIV characteristic
of the two-dimensional lattice Coulomb gas.E is the electrical field
and j is the supercurrent density. In~a! data shown are for param-
etersL532 andm50.0. Different curves are for different tempera-
tures, starting from belowT50.12, 0.15, 0.16, 0.18, 0.20, 0.22,
0.23, 0.24, 0.26, and 0.30. The dashed line has slope 3 which rep-
resents the Kosterlitz-Thouless transition. In~b! finite-size effects
according to Eq.~26! are demonstrated. Data here is forT50.15
and lattice sizes areL58 ~triangles!, 12 ~open squares!, 16 ~stars!,
24 ~open circles!, and 32~filled circles!. The dashed line has slope
1 which represents the linear Ohmic regime.

FIG. 2. Comparison of the exponenta(X) between experiments,
marked with plusses~Ref. 26! and Monte Carlo results for the
lattice Coulomb gas Sizes areL516 ~stars!, 24 ~open circles!,
32 ~filled circles!, and 48~triangles!. X5T/Tc is the reduced Cou-
lomb gas temperature. The dashed line corresponds to the universal
jump condition for the exponent,a(X)52. The inset shows experi-
mental data for Hg-Xe alloy films~plusses! ~Refs. 4 and 26!,
Bi 2Sr2CaCu2Ox single-crystal films~filled squares! ~Ref. 7!, and
Bi 1.6Pb0.4Sr2Ca2Cu3Ox single-crystal films~open squares! ~Ref.
8!.
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The Monte Carlo data presented here fora(X) are all for
m50.0. We also did the same analysis for Monte Carlo data
for L532 andm520.4,20.2 and 0.2. The closest fit to the
experimental results is produced bym50.0. Results for dif-
ferentm differ from them50.0 results, by thatm50.2 has a
slightly larger derivative atX51 and the smallerm are cor-
respondingly less steep.

B. Self-consistentIV characteristic

In our second determination of the exponenta(T) we will
make use of the relations betweene* anda(T) in Eqs.~20!
and~21!. The analysis is based on the self-consistent solution
of Eq. ~19!. For a given current densityj , a set ofe(k) will
be calculated for different temperatures. The self-consistent
solution to Eq.~19! for e* is shown in Fig. 3, in~a! data for
T50.18 is shown and in~b! T50.24. The solid and dashed
straight lines represente*5k* / j2p, given by Eq.~19!, for
different current densitiesj . The open circles represent
e(k* ) as a function ofk for different current densities. The
choice of the direction along whiche(k* ) is probed is per-

pendicular to the current densityj , i.e., parallel to the vortex
drift caused by the current densityj . The intersection be-
tween ae(k* ) curve and the corresponding straight line is
the solution to Eq.~19!, these are marked with filled circles.
In Fig. 3~a! for T50.18,Tc50.218 we see that the self-
consistent solution depends only weakly on the choice of
probing current as long as the current is not too large. In Fig.
3~b! for T50.24.Tc we see, however, that there is no well
defined limiting solution fore* as j→0. This is because the
system is above the Kosterlitz-Thouless temperature and vor-
tex pairs will always dissociate irrespective ofj . In Fig. 4 the
functione* is shown as a function of temperature. The solid
circles represente* from the self-consistent Eq.~19! for the
fixed current densityj50.031 25. The data shown here rep-
resent the construction shown in Fig. 3.

The results from the self-consistent solution fore* are
analyzed in Fig. 5. Here the filled circles represent the expo-
nentaIV(T) from Fig. 2. The upside down triangles represent
aAHNS(T) from Eq.~20! with the solution from Fig. 3 and the
triangles are the corresponding solution to Eq.~21!. One can
clearly see that the expression in Eq.~21!, derived by Min-
nhagenet al.,21 reproduces the exponentaIV(T) for T,Tc .
Note however, it is only a coincidence that Eq.~20!, derived
by Ambegoakaret al.,17 works for temperatures aboveTc in
this figure as the limiting (j→0) solution for 1/e* is not well
defined for these temperatures, as already discussed in con-
nection with Fig. 3~b!. As the simulation dataaIV(T) ~filled
circles! also matched the experimental data in Fig. 1 we must
conclude that belowTc the interpretation according to Eq.
~21! is clearly the more appropriate.

C. Linear resistance

We will now turn to our last determination of the expo-
nenta(T). The results presented above all relied on nonequi-
librium Monte Carlo simulations, i.e., with a finite applied
supercurrent densityj . We will now present the equilibrium
determination forj50 based on finite-size scaling of Monte

FIG. 3. Construction of the self-consistent solution. The data
shown are forT50.18 in ~a! and T50.240 in ~b!. The different
curves represente(k) as a function ofkx for different current den-
sities j50.05 ~bottom curve!, 0.10,0.15,0.20,0.30~top curve!. The
straight lines represent the self-consistency condition for the differ-
ent current densities, and the intersections of the straight lines with
the e(k) curve for the same current densityj represents the self-
consistent solution, here marked with large filled circles.

FIG. 4. The solution to the self-consistent equation~19!. e* as a
function of temperature for the fixed current densityj50.03125.
Data shown are for sizeL532 chemical potentialm50.0. The
dashed line represents the baree51.
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Carlo data for the linear resistance given by the Nyquist for-
mula ~5! together with Eq.~17!. In Fig. 6 we demonstrate a
data collapse of the linear resistance for several lattice sizes.
From Eq.~17! we see that the linear resistance data can be
collapsed onto a single curve, thus representing the thermo-
dynamic limit, by an appropriate choice at each temperature
T of the exponentaR(T). We do this in the following way.
For a given temperature we find the exponentaR which
minimizes the error of the fit defined as
(L,L8@R(L)L

a2R(L8)L8a#2. The considered lattice sizes

are L,L856,8,12,16,24,32. The obtained scaling exponent
aR as a function of temperature is shown in Fig. 7. As a
comparison we also show data foraIV(T) from Fig. 2, ob-
tained from direct evaluation of theIV characteristic. The
finite-size scaling analysis in Fig. 6 breaks down for low
temperatures. This can be seen by the deviation ofaR(T)
from the data foraIV(T) at T50.15. In Fig. 7 this deviation
is also evident. A careful inspection of the scaling at tem-
peraturesT50.15 andT50.18 reveals that the order of the
lattices sizes is reversed forT50.15 compared with the
higher temperatures. This may be related to the difficulties to
converge the simulation at low temperature.

VI. DISCUSSION

We have calculated the nonlinearIV exponentaIV(T) of
the two-dimensional lattice Coulomb gas. Our results are
based on three different determinations. A direct calculation
of the voltage response as a function of an applied current.
Comparison with experiments4,7,8,26 on Hg-Xe films and
single-crystal high-Tc superconductors show good agree-
ment.

Our second method is based on a simple self-consistent
calculation of the dielectric functione* at the unbinding
separation, and theIV exponent can then be calculated. Here
we especially focus on the comparison of two relations be-
tweena(T) and e. The first relation Eq.~20! ~Ref. 17! is
based on ordinary diffusion in two dimensions with a recom-
bination rate proportional tonF

2 . The second expression for
a(T) given in Eq. ~21! has been derived from a scaling
analysis.21

We find that the exponent determined by Eq.~21! for
temperatures belowTc is close to the more direct determined
aIV(T) and will therefore also fit the experiments for these
temperatures.

The third method is based on equilibrium Monte Carlo
simulations. From the scaling relation Eq.~17! for the linear

FIG. 5. The IV exponenta(T) as a function of temperature.
Data shown are for sizeL532 and chemical potentialm50.0. The
filled circles areaIV(T) from the the nonlinearIV characteristic
shown in Fig. 1~b!. The upside down triangles are the exponent
aAHNS(T) from Eq. ~20! usinge* from Fig. ~4!. The triangles rep-
resent the exponentaPM(T) from Eq. ~21! also usinge* from Fig.
4.

FIG. 6. Finite-size scaling of the linear resistanceR. The resis-
tance has been calculated with the Nyquist formula~5!. Shown is a
data collapse ofRLaR(T) as a function ofT for different lattice sizes,
L56,8,12,16,24,32. The exponentaR(T) is chosen in such a way as
to provide the best data collapse. According to Eq.~17! the function
RLaR(T) should be independent of system size.

FIG. 7. Comparison of the exponenta(T) as a function of tem-
peratureT, from two different determinations. The filled circles
represent the exponentaIV(T) determined in Fig. 2 from the non-
linear IV characteristics. The open circles are results foraR(T)
from Fig. 6 from finite-size scaling of the linear resistance.
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resistance we can deriveaR(T). We find that the scaling
exponentaR(T) to a high degree of accuracy fits the direct
determinedaIV(T) for a broad range of temperatures. This
provides a link between the equilibrium and nonequilibrium
response properties of the system: A finite mesoscopic linear
resistance in a finite sample belowTc is due to thermally
activated vortex motion across some potential barrier, gener-
ated by interactions with all other vortices in the system.
When a finite current is imposed across the system, new
nonequilibrium configurations are accessed where vortices
are driven away from their equilibrium positions by the finite
Lorentz force, thus giving nonlinear response. Our data show
that the barrier overcome by the Lorentz force, giving non-
linear response, is essentially the same barrier as in the equi-
librium case, i.e., the potential barrier in the case of a finite
current appears to be determined by equilibrium states in the
system. This is consistent with the scaling ansatz, discussed
above, of a certain current length scale (r * ) associated with
the finite current, such that for lengths shorter than the cur-
rent length scale an equilibrium state is still attained, which
gives a potential barrier essentially equal to that in the equi-
librium case.

An interesting possibility arises here to measure finite-
size effects on the linear resistance in lithographic
Josephson-junction arrays. The idea would here to take ad-
vantage of finite-size roundings, rather than as usual want
them to be as small as possible, and trying to fit experimental

data on very small arrays to our finite-size scaling formulas.
This would provide an unusual experimental test of finite-
size scaling. It is also important to analyze the data in terms
of the reduced temperature scale, asTc is sample dependent.
According to Eq.~17! it should be possible to scale the linear
resistance of samples of different sizes onto a single scaling
function using the exponenta(X) from the nonlinearIV
characteristics.

Our conclusions are~1! simulation of nonequilibrium vor-
tex dynamics allow calculation of a lattice size independent
IV exponenta(T) as a function of temperatureT. ~2! This
curve fora(T) agrees nicely with experiments in an interval
aroundTc , and this appears to be reported here for the first
time. ~3! This curve can be obtained from a simple phenom-
enological theory for the nonlinearIV characteristic.~4! This
curve can also be obtained from a simulation of the equilib-
rium vortex dynamics. This provides a useful link between
driven diffusion and equilibrium dynamics of two-
dimensional vortex systems.
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