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We have studied the nonlinear current-voltage characteristic of a two-dimensional lattice Coulomb gas by
Monte Carlo simulation. We present three different determinations of the power-law ex@(ignof the
nonlinear current-voltage characteristit;- 120 ™1, The determinations rely on both equilibrium and nonequi-
librium simulations. We find good agreement between the different determinations, and our results also agree
closely with experimental results for Hg-Xe thin-film superconductors and for certain single crystal thin-film
high-temperature superconductors.

[. INTRODUCTION experiments, although the logarithm is a complication for
guantitative comparison between theory and experiment. A
In two dimensions the superconducting transition in zerdinite applied current gives a power-law nonlind&t char-
magnetic field is a Kosterlitz-Thouless transitfori.This has  acteristic of the formvV~12M*1, The critical current is thus
been verified over the years in both experiméraad in  zero. At the Kosterlitz-Thouless transition the exponent
many models of superconductors like th&, Villain, and  a(T) assumes the universal value 2,\6e1° at T=T,. For
Coulomb gas modefs>® The important degrees of freedom T<T, one hasa(T)>2, and forT>T, one hasa(T) =0 (for
in a system undergoing a Kosterlitz-Thouless transition aremall enough currents Experiments on, for example, thin
thermally excited vortex pairs. The Kosterlitz-Thouless tran-Hg-Xe alloy filmg' and also for certain single-crystal high-
sition is sometimes also referred to as a vortex unbindingemperature superconductdf$,among some, have con-
transition, as for temperatures below the transition temperagirmed this.
ture T, all vortices are bound in neutral pairs. These pairs SincelV characteristics are hard to calculate analytically
start to unbind at and abovi, . computer simulation is a useful todlV characteristics of
A typical way to look for a Kosterlitz-Thouless transition vortex systems have recently been calculated successfully
in experiments on thin superconducting films is to probe theyith Monte Carlo simulation&® Linear and nonlineaitV
current-voltage (V) characteristié:”® Both the linear and characteristics of vortex glass superconductors have been re-
the nonlinearlV characteristics have specific fingerprints ported in Refs. 10 and 11. In a recent Monte Carlo simulation
identifying a Kosterlitz-Thouless transition. Vortices deter-of the Coulomb gas the linear resistance was used to locate
mine thelV characteristic for the following reasons: If a the Kosterlitz-Thouless transitidA.The nonlineadV char-
vortex is dragged across the system a voltage is induceécteristics at the Kosterlitz-Thouless transition has been cal-
Hence resistance is zero only if there are no vortices availeulated in Ref. 13, and a finite-size scaling analysis accu-
able to move across the system, and only then the system iiately verified the relatio’v/~12 at the Kosterlitz-Thouless
truly superconducting. Vortices that are bound in neutrakransition.
pairs are unable to move freely and to cause dissipation. In this paper we study thB/ characteristics of a lattice
However an external applied in-plane supercurrent yields £oulomb gas model by Monte Carlo simulations of vortex
perpendicular Lorentz force acting in opposite direction ondynamics. We calculate thie/ exponenta(T) of the Cou-
vortices with different vorticity. This gives a net flux of vor- lomb gas in three different way§l) By direct Monte Carlo
tices across the system, which shows up as nonlifiear  calculation of the nonlinear resistanc€?) by a self-
current-dependehtesistance. consistent linear screening construction for the energy barrier
Below the Kosterlitz-Thouless transition temperature allfor current induced vortex-pair breaking giving thermally ac-
vortices are bound in neutral pairs by the logarithmic vortextivated resistance, an) by a finite scaling construction
interaction, and the linear resistance is thus zero. Thereforgom data for the linear resistance. All methods are based on
the system superconducts below the Kosterlitz-Thoules®lonte Carlo simulations, and we apply both equilibrium and
transition. The linear resistance drops to zero at thenonequilibrium simulations. These three methods give the
Kosterlitz-Thouless transition with an exponential functionalsame results, giving us a consistent and simple picture of
form, R~ &2 with Iné~[T—T, Y22 This is consistent with nonequilibrium response in this system. Furthermore, we
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compare our results foa(T) with experiments. Scaling ar- where  k are the reciprocal-lattice vectors,
guments give thaa(T) is a universal scaling function of a k,,k,=27n/L,n=0,... L—1.

reduced Coulomb gas temperatdte T/T,, and this is veri- We will calculate the response voltage to an applied cur-
fied in experiments.We find close agreement between our rent imposed on the Coulomb gas. The above definition does
Monte Carlo results and the experimental universal scalingot include any net currents. How to include them and to
curve. The agreement between different methods, and bealculatel V characteristics by Monte Carlo simulation is de-
tween our simulations and experiments, are the main resultscribed in the next section.

of our paper. Some of our Monte Carlo results for the non-

linear IV characteristics have been obtained previotishs Ill. CURRENT-VOLTAGE CHARACTERISTICS

explained above. ) ) _ _

The paper is organized as follows: In Sec. Il we define the In this section we discuss various aspects and approaches
lattice Coulomb gas model. In Sec. Ill we study various ap-0 the current—voltage characteristics _o_f 2D superconductors
proaches to théV characteristics. In Sec. IV we describe our close to the Kosterlitz-Thouless transition.

Monte Carlo methods for calculatingy/ characteristics. In
Sec. V we present the Monte Carlo results. Section VI con- A. Linear resistance

tains discussion and conclusions. A basic experiment on a superconductor is to measure the

linear resistance. Such measurements on thin films of both
Il. LATTICE COULOMB GAS conventional lowT. superconductofsand single-crystal
A useful starting point for calculations with superconduct—h'gh'TC materials, ® haye been successfu!ly interpreted in
ors in the presense of currents and fields is the Ginsburg{]erms of thermally excited vortex fluctuations analyzed by
Landau model, with the order parameter se of th_e Coulomb_g_és._ i . :
The linear resistivity is defined by=E/j for j—0,

W (r)=|¥(r)|e'"*" describing the superconducting order of here i is th lied ¢ density afdis th
the system. However, this model does not focus particularl ere| 1s the applied supercurrent density andis the
esulting induced electric field. Some words about notation:

on vortex degrees of freedom. The vortices constitute the ) o . o
essential degrees of freedom near the Kosterlitz-Thoules3"c€ resistance and resistivity have the same dimension in

transition. An approximation to the Ginsburg-Landau model™° dimensions and our system is homogeneous, they are the

which focuses only on the vortices is given by the Coulomp>2Me: and th_ey we W'Il both be deﬂmed By R will be
eserved for linear resistance, and will not be used to denote

gas model. Here thermal fluctuations in the magnitude of €S€! . : ;
W are neglected, since they are relevant only close to thEonllnear resistance. An applied supercurrent is denoted by

mean-field transition temperature, which is assumed to b =jL, and vc_)Itage 'QI.ZEL' . L .
well above the vortex transition temperatufe. In our To determine the linear resistance in simulations of the

simulations the model is discretized and put on a lattice. Th oulomb gas fror?E/J lforlsmallj has its Ilmltatlofns, as wed
approximation made in the lattice discretization will only "2Ve to repeat the calculation at a sequence of current den-

affect the short-range behavior of the vortices, as the Iatticﬁ't'esj’ to make sure thaf is small enough to be in the

defines the smallest possible separation. The critical propefn€ar regime. If the purpose is to measure only the linear

ties will however not be effected. In general, large lengthf€SiStance, and né as function ofj, a different approach is

scale properties should be reasonable modeled by the lattid@ US€ the Nyquist formulé, which relates the linear resis-
Coulomb gas close t@. tance to the equilibrium voltage fluctuations:

The lattice Coulomb ga$%® is defined by the partition 1 (4w
functionZ on a square lattice of side lengthusing periodic R= ﬁJ' dt(V(t)V(0)), (5)
boundary conditions: —

Z= Tr.exd — B(H—uN)], (1) vyhere V(t) is the inqluced voltage from vortex motion at
timet. As an alternative to Eq5) the Kubo formula for the
1 vortex currentd,,, R=1/2T [ .dt(l,(t)I,(0)) can be used.
H= 52 niGijn;, 2 Given the Josephson relation we see immediately that the
h Kubo formula equals the Nyquist relation.
The linear resistance has been successfully used in a
N=3 |nl, 3) simulatiort? to locate the Kosterlitz-Thouless transition tem-
i peratureT. of the 2D lattice Coulomb gas. They find the

. I : - o finite-size scaling relation ak, :
whereH is the Hamiltonianp; is the vorticity at site (Cou- 9 ¢

lomb gas charge uw=—E_; is the vortex “chemical poten-

tial” and E, is the vortex core energy, anti=1/8 is the L’R[ 1+

Coulomb gas temperatutdhe trace is oven;=0,+1 on all 4in(L)+C

sitesi, subject to overall neutrality;;n; = 0. G;; is the lattice  to be valid to a very high precision.

Green’s function for the logarithmic two-dimension@D) The scaling relation Eq6) was derived from the follow-

vortex Interaction, ing argument. We assume the dynamical exporzern® for
free vortex diffusion in two dimensiori$:}” The linear resis-

4) tance is a dynamical quantity, it relates to the correlation
time 7, which at T, diverges like 7~ &%, where ¢ is the

=constatT=T,, (6)

1 ﬂ_eik~(ri—r]—)

Gij= ng 2—cogk,) —cogk,)’
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correlation length. According to the Josephson relation the 1 1 K2
voltageV~dA ¢/dt~ 71, whereA ¢ is the gradient of the
phase of the Ginsburg-Landau order paramét@herefore,
we expect the linear resistance, E(h), to scale like
R~¢& 2 atT.. At T, the correlation length diverges and is
cut of by the finite sizeL of the lattice and henc®L?=

(k) g(k) KN 2

In the limit \— o the two different dielectric functions be-
come equal. This is the case for temperatures blpwThe

const atT .., to lowest order. The scaling relation has a Ioga—d'el(.eCtrIC funct|o'n, 14(k), is obtained from the chargg fluc-
tuations below in Eq(24). The real-space expression for

rithmic correction which has been included in Ef). This E(r) is obtained from
correction is readily obtained from the corresponding correc-

i 19
tion terms for 1¢ andA. E(r)= lim V,(r),

A—©
B. Thermally activated resistance

. L . where
The above scaling argument led to a finite-size scaling

formula which is useful for locating the transition tempera- dk '
ture from Monte Carlo data for the resistance of finite Vl(r)=f—2V|(k)e'k".
samples. Here we will do a more detailed analysis that will 2m

a!so Iea_d to the same formula. The analys_is here QOes N can obtain an approximate expressionVg(r) by mak-
directly involve scaling arguments, but considers the mterac—ng use of the fact thak(k) only depends weaklgin most of

tions between vortices in the Coulomb gas. The analysis wil space on k. For a given distance, the Fourier integral

give expressions for the reS|stanc¢ from thermally activate icks up its main contribution from th& values around
free vortices in the Coulomb gas in the presence of an a|

- - . e . H

plied supercurrent. This more detailed analysis will be usefu mir. Hence

in later sections when we analyze Monte Carlo data for the 1

Coulomb gas. | Vi(N) = Vi(r=1)~— —————Ko(r/\).
According to the Josephson relation the voltafeaused e(k=2mxIr)

by vortex motion is ) o
Here we have subtractédi(r=1) in order to eliminate the

dA¢ creation energyK, denotes a modified Bessel function. As
V~ TN”FL A —o this expression reduces to
where we assume that the resistance is proportional to the o 1
density of “free” vortices,ng, defined by the the Debye- Vin=vi(r=1)~ e(2mIr) In(r/), ©
Huckel relation. The linear resistande is defined by the .
limit of zero currentl ; where we usee instead ofe, as the temperature is below
T..
V According to this discussion the coefficieBf is given
R=Iim|—~n,:. (7 by?°
1—0
To make an estimate of the density of free vortices we pro- El:;' (10)
ceed by the following simple model. The energyr) of a €(2m/r)
ir of ion>rg in th f .
Yoigﬁx pair of separation=r, In the presence of a current The weakr dependence describes the effect of the surround-

ing vortex pairs. The coefficierE, contains the remaining
r constant terms from Ed9). In a first approximation we will
E(r)=Eq+ El|n<—) —1(r—ryp), (8)  neglect ther dependence il .
Fo The energyE(r) in Eqg. (8) has a maximum at separation
r*=E,/l and the energy needed to separate a vortex pair to

whereE, is a constantE; is discussed below ang is the o
0 B b this distance

smallest possible separation, which we will setde-1 from
now.

We will now use the linear screening approximafida
derive an expression for the second teyinr in Eq. (8).

AE=E(r*)—E(r=1)=E,In(r*)—1(r*—1), (11

'_rhe expression is obtaln_ed from the Fourier transform of the AE=Eqn _1) —E 4. (12)
linearly screened potentid, (k), I
20 Let I" denote the thermal production rate of free vortices.
Vi(k)=— % P A vortex vanishes when it collides with an antivortex. Hence,
€

it appears reasonable to assume an annihilation rate propor-

Here is the vortex screening length, ai(k) is the part of tional tonZ . This leads to the following rate equation:
the dielectric functione(k), describing the polarization of . )
the bound pairs. The twe are related by ne=I'-cng. (13
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Wherec is a constant. The steady-state conditiomjs=0 D. Self-consistentV characteristic
and hence we havx Ve Assuming thaf” is determined Another expression for thi/ characteristic is obtained if
by a_ctlvat|on7over the barriekE we get the following pro- e include ther dependence ifE; in Eq. (10). The length
duction rate’ dependence can in a first approximat@m an expansion in
derivatives ofE,(r)] be included simply by replacing, in
Fxe—AE/T (14) 1(1)] ply by replacing,

Eq. (15 by 1/e(2@/r*) in the extremum equation
tion r* the vortex pair is broken apart and we therefore use

BT 1 E, the stiffness 1(r) of the system at this separation. We find
Rongoce xexp — o> E4ln T E;+l the appropriate(r) by solving self-consistently the equation
E,\ "B/2T | = ! __ K . (19
oc<|_1> eE1/2Tg—1/2T emlr*)r*  e(k*)2mw

The self-consistent obtained by solving Eq(19) will be
Keeping the important term for small but finiteve arrive at  denotede*. The relation between the exponeil) and the
E ot dielectric functione is according to Eqg15) and(10) given

E,\ “Eu ; 17

ROC<|_1> _ (15 by the expressiosee Ambegoakaet al.™’)

A given currentl gives rise to a “current length scale™ a(T)AHNS:ﬁ; (20)
from the maximum condition in Ed8). As the lattice of the

system has a finite size, this sets an upper limit to the “curl€re we use* as we are at temperatures beldw.

rent length” and hence a lower limit to the current producing ~R€cently Minnhageet al. have used scaling arguments to
nonlinear resistance. The smallest current giving nonlineaﬁ?’ier'lVe an alternative relationship betwes(T) ande, given
resistance i$* =E, /r* with r* =L and hence for currents

smaller thar* the resistance will be cut off by the finite size 1

L of the lattice and the resistance becomes Ohmic. The Ny- a(Mpy==>—2. (21)
quist resistance is calculated witk-0 and hence Te

_gyor As one im_mediately realizes EQR1) i_s not consistent with
Roc<£> (16) the activation argument used to derive E20). In order to
L ' reconcile Eq.(21) with a rate equation like Eq.13) Min-
nhageret al.. have made the following suggestion. They as-
This means that we can scale the linear resist&hfrem  sume that the activation is correctly represented’tin Eq.
the Nyquist relation Eq(5) with the exponenE;/2T. This  (14). The recombination, which in E¢13) is represented by
exponent is precisela(T), the exponent of the nonlinear the innocently looking terrmﬁ, is on the other hand sup-

IV characteristicgsee Eq(18) below], hence posed to be replaced hyt*® with b=2/(E,/T—2). The
- sole argument for this replacement is unfortunately so far
f(T)=RL (17 simply the observation that one then can derive Bf)

from an equation like Eq(13). Nonetheless, we shall see
$elow that for temperatures beloly Eq. (21) fits the simu-
lation data much better than E(O) does. However a mo-
n{ivation for a recombination term different from the one in
Eq. (13) has not been presented. & both relations repro-
duce the same exponeafT=T.)=2.

should collapse onto a single curve for different lattice size
L. l.e., f(T) should not depend on lattice sike The resis-
tance we use for this scaling will be the one determined fro
the voltage fluctuations Eq5). The exponent determined
from resistance data at zero current will be denag(rl).

C. Nonlinear IV exponent IV. MONTE CARLO SIMULATION
We are going to make use of a couple of different expres-
sions for the power-law exponea{T) of the nonlineadV In this section we describe how we calculate current-
characteristics. From E@15) we get the nonlinearV char-  voltage characteristics by Monte Carlo simulation of the lat-
acteristic, tice Coulomb gas. The algorithm to simulate the lattice Cou-
lomb gas works as follow§® First we pick a nearest-
E,\ “E/2T neighbor pair (,j) of lattice sites at random. Then we try to
Voc<_> el #T 18 i b dtod b th i
| increasen; by one and to decreasg by one, thus preserving

overall vortex neutralityZ;n;=0. This Monte Carlo move of
The exponent calculated by monitoring the voltage responsiserting a neutral pair will be interpreted as transfer of one
V as a function of an applied supercurréntill be denoted  unit vortex from sitej to i. If the energy change IAE we
a,v(T). On afinite system we will obtain a nonlinear voltage accept this trial move according to the standard Metropolis
response only above a finite applied current, given byalgorithn?? with probability expt-AE/T). These simple
I*~E, /L, such that the current lengtfi is shorter than the Monte Carlo moves can both create, annihilate, and move
sizeL of the system, as discussed above. vortices. Thermodynamic averages are computed as Monte
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Carlo time averages over the sequence of generated configuniversal jump criterion for a Kosterlitz-Thouless transition

rations. involves the dielectric response functiore,1given by
To calculatelV characteristics works as follow§! An
applied current density gives a Lorentz force gfh/(2e) on 1 2
a unit vortex. The Lorentz force can be incorporated in the e(k) =1- szL2<nkn—k>v (29

Monte Carlo move¥ by adding to AE an extra term

jh/(2e) if the unit vortex moves in the direction opposite to

the Lorentz force, subtracting this term if it moves in the nKZE ne ki, (25)
same direction, and making no change\il if it moves in a ri

perpendicular direction. Biasing the Monte Carlo moves in ) ) _

this way takes the system out of equilibrium and causes a ng}(h_erenk is the Fourier transform of the vortex density. The
flux of vortices in a direction perpendicular to the current.iMit k—0 denoted 1é(k=0), corresponds to the fully

This generates a voltage given by the Josephson relation: renormalized long-wavelength superfluid density, and the
universal jump criterion tells us that d(k=0) jumps from

h AT, at T=T, to 0 atT=T, .9 A practical difficulty for
V= (l,(1)), (22 locatingT from Monte Carlo data on small lattices with this
2e procedure is that extrapolation to tlke=0 limit requires
large lattices, as the smallest nonz&rs 27/L. The corre-
sponding quantity to lé(k=0) in the two-dimensionaKyY
model is called the helicity modulug ® Both quantities have
been used to locate the Kosterlitz-Thouless transition tem-

where | ,(t) is the vortex current. Heré denotes Monte
Carlo time, incremented byt after each attempted move.
The vortex current i$, (t) =+ 1/LAt if a unit vortex moves
one lattice spacing in the direction of the Lorentz force atperature in Monte Carlo calculatiof251°

tA'mS t, Zand Iﬁ(t)=0 otherwise. We use units such that = |, the data analysis in the next section we use an alterna-

t=1L _So that an attempt is mad_e o move a vortex ofy;ye procedure to locat&, from the linear resistancé.We

each lattice site, on average, per unit time. We also use unit§:-in the linear resistande from the Nyquist formula in

such thgth/(Ze) :.1' . Eq. (5) for a sequence of system sizesand temperatures
The linear resistance can also be obtained from the Nyt According to Eq.(6) data for LR for different system

quist relation in Eq(5) for equilibrium volt_age fluctuations sizes should become system size independent at the critical

in the absence of any net currents. For discrete Monte Carlfémperature which is our criterion to locafe. This cir-

. . . . 6,23 . . ) .

time it is given by,***in our units, cumvents the difficulties of using &(k=0). The two deter-

minations give within error bars the same value Tqr.

R= 1 E At(V(1)V(0) (23)
2T, {(VOV(0)). V. RESULTS

The cutoff timer is set to 1000 time steps, this has proved to e present Monte Carlo simulation results for three dif-

be sufficient aRk saturates for values ofless than 100 time  ferent determinations of the/ exponenta(T) for the 2D
steps. Coulomb gas model. The results we show here are for the

The underlying assumption in using Monte Carlo dynam-chemical potential.=0.0 and lattice siz& =32 if not dif-
ics to calculatelV characteristics is that Monte Carlo time ferently stated.

can be equated with real time. This approximation has
proven reasonable in other simulations of vortex
dynamics®t:131t should be good near a critical point where
vortex motion is slow and overdamped, but not so satisfac- Our first method consists in a direct measurement of the
tory at high temperatures or currents where the discretenesdectric fieldE induced by an applied current density In
of Monte Carlo time becomes visible as a saturation of vorFig. 1(a) results for thelV characteristic of the two-
tex velocities. We get strong support for this assumptiordimensional Coulomb gas are shown. The dashed line in the
from the results in the next section since we can reproduct(E) versus In]) plot has slope three and represents the
the expectedlV characteristic at the Kosterlitz-Thouless slope atT=T, according to the universal jump conditidn.
transition, and since we come close to experiments. One cafihe solid curves represent results for different temperatures.
in principle, also test this by comparison to dynamics simu+or very high current the voltage response saturates. This is
lations where time evolution equations are integrafed. because when all attempts to move the vortices in the direc-
In the equilibrium simulations in the case of no net cur-tion of the Lorentz force are already accepted, further in-
rents we typically use £0-10’ Monte Carlo sweepgsone creasing the current cannot give more voltage. For low
sweep means one Monte Carlo time step defined above, i.eenough current there is a crossover to Ohmic resistance,
L XL attempts to insert nearest-neighbor paiend in the  when the current length equals the system size, and the non-
nonequilibrium case of an applied current we typically uselinear dependence of the resistance on the current vanishes.
10°—10° Monte Carlo sweeps. In the evaluation of the Ny- The regime where we probe the nonlinédrcharacteristic is
quist formula for the linear resistance, E), we typically  for this figure approximately from jr=—1.5 up to~—0.5.
sum over 18— 10* time steps. According to the Kosterlitz-Thouless theory the slope of the
The first task for our simulations is to locate the lines should be 3 at the critical temperature, and this criteria
Kosterlitz-Thouless transition temperatuiie.. The usual can be used to determiffg . We will however use an inde-

A. Nonlinear IV exponent
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FIG. 2. Comparison of the exponemtX) between experiments,
S marked with plussegRef. 26 and Monte Carlo results for the
lattice Coulomb gas Sizes ale=16 (starg, 24 (open circley,
—_ 32 (filled circles, and 48(triangles. X=T/T, is the reduced Cou-
o .10 |- lomb gas temperature. The dashed line corresponds to the universal
et jump condition for the exponeng(X) =2. The inset shows experi-
- mental data for Hg-Xe alloy filmgplusseg (Refs. 4 and 2§
Bi,Sr,CaCuy,0, single-crystal films(filled squares (Ref. 7), and
-15 — Bi; ¢Pby 4Sr,Ca,Cuz0, single-crystal films(open squargs(Ref.
8).
20 L= E=R(L)j+consfE2T1 (26)
-4 -3 -2 -1 0

where the first termR(L) follows from Eg. (16) and
R(L)—0 asL—. The second term in E¢26) is given by
) o Eqg. (15 and will remain finite in the limitL—oo. This is
FIG. 1. Monte .Carlo re‘sults for the nonl.lnear’ chargcter|§t|c clearly demonstrated in Fig.() where we see that the
of th_e_two-dlmensmnal lattice (_:oulomb g&sis the electrical field crossover in Eq(26) between the linear and nonlinear re-
:PederLls_t:zeas:geg:grgené_cfifensutty. @) data S?OWS_ﬁafe fct>rt param- gime appears at a higher driving current for the smaller
o #O_m 'b'elo\'/we_reonlgu%’issaroelgr O'lesreg 2gm8e2r§- 8Xx 8 lattice as the current lengtE( /1 = £,~L) associated
I)urzzsosgt '0.26, and 0.30, The dushed line has slope 3 which refith the current density exceeds the size of the lattice.
In Fig. 2 the exponend,(X) is shown as a function of

resents the Kosterlitz-Thouless transition. (b finite-size effects v X
according to Eq(26) are demonstrated. Data here is or0.15  the reduced temperatuné=T/T.. The dashed horizontal

In (jy)

and lattice sizes are=8 (triangles, 12 (open squares16 (starg,  line represents the universal jump condition &y(X). The
24 (open circle and 32(filled circles. The dashed line has slope Plusses represent experimental data from a superconducting
1 which represents the linear Ohmic regime. Hg-Xe film.*%® The filled circles are the results far, (T)

from Fig. 1. The other three data sets are for lattice sizes
pendent determinatidfiof T for this system, based on the L=16 (star3, 24 (open circley and 48(triangles. As one
finite-size scaling relation Ed6). can see there are no apparent finite-size effects in the data. In
In Fig. 1(b) we demonstrate the effects of the finite lattice the vicinity of the critical temperature the experimental data
size for low driving currents at temperatures beldy. The  are reproduced by the Monte Carlo simulations.

data shown are fof =0.15 and lattice sizes ale=8 (tri- The reduced temperature variablaused in Fig. 2 for the
angles, 12 (open squargs 16 (starg, 24 (open circleg and  experiment is also from Ref. 26 and for the lattice Coulomb
32 (filled circles. gas data we us&.=0.21812 determined from a finite-size

The finite-size effects for the lower temperatures can bescaling analysis using E@6).
understood in the following waySee the discussion above  The inset in Fig. 2 shows a selection of experimental data
following Eq. (15).] The finite lattice size is important be- analyzed along the lines described in Ref. 26. The data in the
cause pair excitation over the barrier given by the periodicityinset (plusseg are the same as in the main figure, the other
lengthL will add to the dissipation due to unbinding of pairs data are for BjSr,CaCu,O, single crystalfilled squares’
over the barrier given by the pair siz&. The induced elec- and for Bi; gPbg,Sr,Ca,Cus;0, single crystal (open
tric field will accordingly be of the form squares®
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7
@
FIG. 4. The solution to the self-consistent equaiib®). €* as a
function of temperature for the fixed current dengity 0.03125.
L6k B Data shown are for siz& =32 chemical potentiau=0.0. The
2 dashed line represents the barel.
w

L4~ pendicular to the current density i.e., parallel to the vortex

drift caused by the current densify The intersection be-
- tween ae(k*) curve and the corresponding straight line is
the solution to Eq(19), these are marked with filled circles.
In Fig. 3@ for T=0.18<T.=0.218 we see that the self-
7 consistent solution depends only weakly on the choice of
probing current as long as the current is not too large. In Fig.
3(b) for T=0.24>T_; we see, however, that there is no well
FIG. 3. Construction of the self-consistent solution. The datadefined limiting solution fore* asj—0. This is because the
shown are forT=0.18 in (a) and T=0.240 in (b). The different  system is above the Kosterlitz-Thouless temperature and vor-
curves represent(k) as a function ok, for different current den-  tex pairs will always dissociate irrespectivejofin Fig. 4 the
sities j =0.05 (bottom curve, 0.10,0.15,0.20,0.3@op curve. The  function €* is shown as a function of temperature. The solid
straight lines represent the self-consistency condition for the differcircles represen¢* from the self-consistent E19) for the
ent current densities, and the intersections of the straight lines withxed current density=0.031 25. The data shown here rep-
the e(k) curve for the same current densityrepresents the self- rasent the construction shown in Fig. 3.
consistent solution, here marked with large filled circles. The results from the self-consistent solution fsv are
analyzed in Fig. 5. Here the filled circles represent the expo-
The Monte Carlo data presented hered¢K) are all for  nenta,(T) from Fig. 2. The upside down triangles represent
©=0.0. We also did the same analysis for Monte Carlo data,,\s(T) from Eq.(20) with the solution from Fig. 3 and the
for L=32 andu=—0.4,—0.2 and 0.2. The closest fit to the triangles are the corresponding solution to E21). One can
experimental results is produced Jay=0.0. Results for dif- clearly see that the expression in Eg1), derived by Min-
ferentu differ from the = 0.0 results, by thak=0.2 has a nhagenet al.?* reproduces the exponeat,(T) for T<T,.
slightly larger derivative aK=1 and the smallef. are cor-  Note however, it is only a coincidence that E80), derived
respondingly less steep. by Ambegoakaet al.!” works for temperatures aboig in
this figure as the limiting j— 0) solution for 1£* is not well
defined for these temperatures, as already discussed in con-
nection with Fig. 8b). As the simulation data,(T) (filled
In our second determination of the expona(iT) we will  circles also matched the experimental data in Fig. 1 we must
make use of the relations betweeh anda(T) in Egs.(20)  conclude that belowl . the interpretation according to Eq.
and(21). The analysis is based on the self-consistent solutiofi21) is clearly the more appropriate.
of Eq. (19). For a given current density, a set ofe(k) will
be calculated for different temperatures. The self-consistent
solution to Eq.(19) for €* is shown in Fig. 3, i@ data for
T=0.18 is shown and iitb) T=0.24. The solid and dashed We will now turn to our last determination of the expo-
straight lines represenrt =k*/j2, given by Eq.(19), for  nenta(T). The results presented above all relied on nonequi-
different current densitie§. The open circles represent librium Monte Carlo simulations, i.e., with a finite applied
e(k*) as a function ok for different current densities. The supercurrent density. We will now present the equilibrium
choice of the direction along whick(k*) is probed is per- determination foj =0 based on finite-size scaling of Monte

12—

B. Self-consistentlV characteristic

C. Linear resistance
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FIG. 5. ThelV exponenta(T) as a function of temperature. FIG. 7. Comparison of the exponeatT) as a function of tem-
Data shown are for size=32 and chemical potential=0.0. The  peratureT, from two different determinations. The filled circles
filled circles area,,(T) from the the nonlineatV characteristic represent the exponeaty,(T) determined in Fig. 2 from the non-
shown in Fig. 1b). The upside down triangles are the exponentlinear IV characteristics. The open circles are results dg(T)
aanns(T) from Eq. (20) usinge* from Fig. (4). The triangles rep-  from Fig. 6 from finite-size scaling of the linear resistance.
resent the exponerats,(T) from Eq. (21) also usinge* from Fig.

4, arelL,L'=6,8,12,16,24,32. The obtained scaling exponent

ar as a function of temperature is shown in Fig. 7. As a
Carlo data for the linear resistance given by the Nyquist forcomparison we also show data fag,(T) from Fig. 2, ob-
mula (5) together with Eq(17). In Fig. 6 we demonstrate a tained from direct evaluation of the/ characteristic. The
data collapse of the linear resistance for several lattice size§inite-size scaling analysis in Fig. 6 breaks down for low
From Eq.(17) we see that the linear resistance data can bgemperatures. This can be seen by the deviatiomggfT)
collapsed onto a single curve, thus representing the thermgrom the data fom,,(T) at T=0.15. In Fig. 7 this deviation
dynamic limit, by an appropriate choice at each temperaturgs also evident. A careful inspection of the scaling at tem-
T of the exponentir(T). We do this in the following way. peraturesT=0.15 andT=0.18 reveals that the order of the
For a given temperature we find the exponegt which |attices sizes is reversed foF=0.15 compared with the
minimizes  the error of the fit defined as higher temperatures. This may be related to the difficulties to
S u[R(L)LA=R(L")L'®]%. The considered lattice sizes converge the simulation at low temperature.

1 T VI. DISCUSSION

We have calculated the nonlinelr exponenta,(T) of
the two-dimensional lattice Coulomb gas. Our results are
based on three different determinations. A direct calculation
of the voltage response as a function of an applied current.
Comparison with experimerft§®2® on Hg-Xe films and
single-crystal highF, superconductors show good agree-
ment.

Our second method is based on a simple self-consistent
calculation of the dielectric functior* at the unbinding
separation, and thid/ exponent can then be calculated. Here
we especially focus on the comparison of two relations be-
tweena(T) and e. The first relation Eq(20) (Ref. 17 is
based on ordinary diffusion in two dimensions with a recom-
bination rate proportional to%. The second expression for

T ' a(T) given in Eg.(21) has been derived from a scaling
analysis?
FIG. 6. Finite-size scaling of the linear resistariteThe resis- We find that the exponent determined by Eg1) for

tance has been calculated with the Nyquist form@la Shown is a  temperatures below, is close to the more direct determined
data collapse oRL?(™) as a function off for different lattice sizes, @;v(T) and will therefore also fit the experiments for these
L=6,8,12,16,24,32. The exponemy(T) is chosen in such away as temperatures.

to provide the best data collapse. According to @4) the function The third method is based on equilibrium Monte Carlo
RL2R™ should be independent of system size. simulations. From the scaling relation E4.7) for the linear
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resistance we can derivag(T). We find that the scaling data on very small arrays to our finite-size scaling formulas.
exponentag(T) to a high degree of accuracy fits the direct This would provide an unusual experimental test of finite-
determineda,,(T) for a broad range of temperatures. This size scaling. It is also important to analyze the data in terms
provides a link between the equilibrium and nonequilibriumof the reduced temperature scale,Tads sample dependent.
response properties of the system: A finite mesoscopic lineakccording to Eq(17) it should be possible to scale the linear
resistance in a finite sample beloly is due to thermally resistance of samples of different sizes onto a single scaling
activated vortex motion across some potential barrier, genefunction using the exponerda(X) from the nonlinearlV
ated by interactions with all other vortices in the system.characteristics.

When a finite current is imposed across the system, new Our conclusions arél) simulation of nonequilibrium vor-
nonequilibrium configurations are accessed where vorticegex dynamics allow calculation of a lattice size independent
are driven away from their equilibrium positions by the finite IV exponenta(T) as a function of temperaturg. (2) This
Lorentz force, thus giving nonlinear response. Our data showurve fora(T) agrees nicely with experiments in an interval
that the barrier overcome by the Lorentz force, giving non-aroundT., and this appears to be reported here for the first
linear response, is essentially the same barrier as in the equime. (3) This curve can be obtained from a simple phenom-
librium case, i.e., the potential barrier in the case of a finiteenological theory for the nonline&y characteristic(4) This
current appears to be determined by equilibrium states in theurve can also be obtained from a simulation of the equilib-
system. This is consistent with the scaling ansatz, discusse@im vortex dynamics. This provides a useful link between
above, of a certain current length scaté Y associated with driven diffusion and equilibrium dynamics of two-
the finite current, such that for lengths shorter than the curdimensional vortex systems.

rent length scale an equilibrium state is still attained, which

gives a potential barrier essentially equal to that in the equi- ACKNOWLEDGMENTS

librium case.

An interesting possibility arises here to measure finite- We acknowledge stimulating discussions with P. Min-
size effects on the linear resistance in lithographicnhagen and K. Holmlund. H.W. was supported by grants
Josephson-junction arrays. The idea would here to take adrom Carl Trygger, M.W. was supported by grants from the
vantage of finite-size roundings, rather than as usual warffwedish Natural Science Research Coun®IFR) and
them to be as small as possible, and trying to fit experimentat.J.J. was supported by the British EPSRC.

1J. M. Kosterlitz and D. J. Thouless, J. Phys5Q.124(1972; 6,  °J.-R. Lee and S. Teitel, Phys. Rev. Leit, 1483(1990; Phys.

1181(1973. ) Rev. B46, 3247(1992.
2V, L. Berezinskii, Zh. K&sp. Teor. Fiz.61, 1144 (197) [Sov.  16F. Reif, Fundamentals of Statistical and Thermal Physics
Phys. JETP34, 610(1972]. (McGraw-Hill, New York, 1965.
jP- Minnhagen, Rev. Mod. PhyS®, 1001(1987. 17v. Ambegoakar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,
A.M. Kadin, K. Epstein, and A.M. Goldman, Phys. Rev.ZB, Phys. Rev. Lett40, 783(1978; Phys. Rev. B21, 1806(1980.
6691(1983. 18M. Tinkham, Introduction to SuperconductivityMcGraw-Hill,
5S. Teitel and C. Jayaprakash, Phys. Re®7B598 (1983. New York, 1975.
°J. Villain, J. Phys(Parig 36, 581 (1975. 194 Weber and P. Minnhagen, Phys. Rev3B 5986 (1988.

’1. G. Gorlova and Yu. I. Latyshev, Pis'ma ZﬁkEp. Teor. Fiz.
51, 197(1990 [JETP Lett.51, 224(1990].

8A. K. Pradhan, S. J. Hazell, J. W. Hodby, C. Chen, Y. Hu, and B.
M. Wanklyn, Phys. Rev. Bl7, 11 374(1993.

°D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Le39, 1201
(2979.

00, Wallin and S. M. Girvin, Phys. Rev. B7, 14 642(1993. : SETEs O

1R, A. Hyman, M. Wallin, M. P. A. Fisher, S. M. Girvin, and A. P. SymposiuniWorld Scientific, Singapore, 1994

20p. Qlsson, Phys. Rev. B6, 14 598(1992.

2lp, Minnhagen, O. Westman, A. Jonsson, and P. Olsson, Phys. Rev.
Lett. 74, 3672(1995.

22N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, J. Chem. Phy21, 1087(1953.

Z3A. P. Young, inProceedings of the Ray Orbach Inauguration

24 : ) )
Young, PhyS Rev. K1, 15 304(1995 P. Meakln, H. Metiu, R. G. PetSChek, and D. J. Scalaplno, J.

12\, Wallin and H. Weber, Phys. Rev. BL, 6163(1995. ”e Chem. Phys79, 1948(1983.

13) -R. Lee and S. Teitel, Phys. Rev.5B, 3149(1994. J.-R. Lee and S. Teitel, Phys. Rev.4B, 3247(1993.

143V, JoseL. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. °P. Minnhagen, Phys. Rev. B8, 2463(1983.
Rev. B16, 1217(1977.



