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Abstract

Models for highway traffic are studied by numerical simulations. Of special
interest is the spontaneous formation of traffic jams. In a thermodynamic
system the traffic jam would correspond to the dense phase (liquid) and the
free flowing traffic would correspond to the gas phase. Both phases depending
on the density of cars can be present at the same time. A model for a single
lane circular road has been studied. The model is called the optimal velocity
model (OVM) and was developed by Bando, Sugiyama, et al. We propose here
is a reformulation of the OVM into a description in terms of potential energy
functions forming a kind of Hamiltonian for the system. This will however not
be globally defined Hamiltonian but a locally defined one as it is a dynamical
model. The model defined by this Hamiltonian will be suitable for Monte-
Carlo simulations.

1 Bando Model

We report a suggested reformulation of the Bando Model [1, 2], to a model
including a kind of thermodynamics. The Bando model is a deterministic
model for traffic flow. We restrict the work to a 1 dimensional single lane
circular road shown in figure 1.

Velocity of car i is denoted by vi and position by xi, (in a dimensionless
formulation the set of equations to the right the velocity is u and position is
y). The Bando model is defined by the following set of equations
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∆x

Fig. 1. One dimensional circular road with periodic boundary conditions. The cars
are represented by blue filled circles, their velocity’s are marked by red arrows and
the headaway distance is marked by ∆x.
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vopt (∆xi) = vmax
(∆x)2

D2+(∆x)2 uopt (∆yi) = (∆y)2

1+(∆y)2 (3)

b = D
vmaxτ (4)

(1)

The control parameters are the maximal velocity vmax, the time scale τ
and the interaction distance D. The optimal velocity vopt(∆x) is a function of
headway (bumper-to-bumper) distance ∆xi = xi+1 −xi. The average density
of cars is c = N

L .

The acceleration of the cars is given by ai = dv
dt and is given by the Bando

model (eq 1). This acceleration corresponds to a force on the car according to
Newton’s second law F = ma = dv

dt . Finally we get the potential energy Vpot

associated with the F as we know the displacement it acts over.
This potential energy can be used to reformulate the Bando model into

a Hamiltonian fot the system of cars. It should be noted however that the
Hamiltonian obtained is not a true Hamiltonian as it is only locally defined.
But all the least we can still use it to perform Monte–Carlo simulations.

Below we show some earlier numerical results for the Bando model [3],
where the equations where integrated out with 4th order Runge–Kutta
method. Under certain conditions the traffic separates into two phases. A
dense (=jam) and a dilute (=free flow) one. Very much like a liquid–gas tran-
sition, use the difference in densities as order parameter. The results in figure
2 show a coexisting dense and dilute phase for certain values of b and c, where
the cars move in either a jam umin or in a free flow umax. In corresponding
phase diagram can be seen in figure 3.

2 Monte Carlo Simulations

With Monte Carlo simulations one can analyze many complex (many degrees
of freedom) problems such as: magnetic systems, gases, super conductors,
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Fig. 2. The figure to the left shows a sub critical bifurcation diagram (c = 1.5) and
figure to the right shows a critical bifurcation diagram (c =

√
3) (N = 60).
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Fig. 3. Phase diagram of the Bando Model. The critical value for b is bcr = 3
√

3/4.

atoms, nuclear decay, telephone switchboards,... We will take an example the
2D Ising model. This is a model for magnetic systems and also other cases
with two states of the configurations variables like a binary alloy. In figure 2
a grafical representation of the 2 dimensional Ising model on a square lattice
is shown.

The Ising model in 2 dimensions has an exact solution, the famous On-
sager solution [4] and in principle one should not need to perform Monte–Carlo
simulations on it. But it has become very famous and it has reached a posi-
tion within condensed matter physics similar to the Bohr atomic model for
hydrogen.

Every state of the Ising model has an energy according to the Hamiltonian
of the system

H = −

∑

<i,j>

Si · Sj .

The thermodynamic properties are given by the partition function Z =
∑

l e
−Hl/kBT . From Z we can calculate ”any” thermodynamic property of the

system. Most (nearly all) systems are however to complicated to be solved an-
alytically in a closed form and we have to revert to Monte – Carlo simulations
(see [5]) in order to learn more about the model in question.

Now we will describe how to do Monte–Carlo simulations in practice. For
a configuration of spins Si, the Metropolis procedure is:
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Fig. 4. The 2 dimensional Ising model on a square lattice. At each lattice site there
is a configuration variable Sij = ±1 shown here as arrows.

1. Generate a new state by a change to one of the spins Sj → Sj + ∆Sj . For
the Ising model

2. Calculate the energy difference ∆E.
3. Accept the new state if ∆E < 0, else if ∆E > 0, accept the new state if

r < e− ∆E/kBT where r is a random number r ∈ [0, 1], otherwise keep the
old value.

4. Goto step 1.

Monte–Carlo usually used for equilibrium properties, but can be used for
dynamics as well. There are other Monte – Carlo procedures as well as the
heat bath method.

3 Driven system, an Example

As it is not directly clear that one should be able to get any sensible results
from Monte–Carlo simulations for a driven system. A driven system is not in
equilibrium and thereby we are no assured that equilibrium methods should
apply. But we will show an example of how it can be done. One of the authors
has performed a Monte–Carlo simulation of a current–voltage (IV) character-
istics for a superconducting film. Just some short remarks about the system
In a SC film vortex pairs a thermally excited. Vortices interact logarithmically
V (r) = ln(r) and hence system is a 2D Coulomb gas. A Monte–Carlo move
consists of adding ±–pairs (charge neutral) at random position and random
orientation.

Dynamics: IV current – voltage characteristics. The electric field →

Lorentz force gives created pairs different energy according to their orien-
tation.

The energy contribution due to the Lorentz force introduces a local part
into the Hamiltonian → No global Hamiltonian!

V ∝ Ia a = 3 at Tc
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Fig. 5. A two dimensional superconductor with 2 vortex pairs in it. The electrical
field is in the direction of E.
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Fig. 6. To the left four possible orientations of a vortex pair are seen with respect
to the driving electrical field E. The energy of a particular pair depends on its
orientation. Configurations a) and b) have different energy and c) and d) are not
effected by the presence of the field E. To the right Monte–Carlo simulation results
are shown together with experimental results, the different curves fall on top of each
other suggesting that we can recover the experimentall facts with a simple driven
model. X is the reduced temperature T

Tc
. Figure to the right is from [6].

Non linear IV characteristics from experiments and Monte–Carlo simulations
compare very well.

4 Traffic flow

Now to the Metropolis procedure for the cars. The basic idea is simple we
reformulate the Bando model in terms of locally defined potential energys.

1. For a car i make a random change in velocity ∆v ∈ [−∆vmax, ∆vmax].
2. The force F is known from the Bando model (eq. 1) to the car ahead and

behind.
3. Calculate the change in energy ∆E (pot + kinetic) due to the proposed

change in velocity ∆v of the car.
4. Use Metropolis to determine if the change ∆v is accepted.
5. Move the car with either its new or old velocity in time step ∆t.
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There is an extra parameter in the problem the ratio m/T where m is
the mass of the car and T is the temperature. However note, T is not real
temperature it is a meassure of the strength of fluctuations. The potential
energy Vpot is also unusual as it is a function of both velocity vi and position

xi.
We have made test runs with a preliminary program for the Bando model

defined in terms of potential and kinetic energys. These preliminary runs
have been restricted to only take the potential energy into account, as this
corresponds closly to the Bando model. In the figure 7 we show the potential
energy of a single car in a system consisting of only 3 cars. These three cars are
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Fig. 7. The potential energy for a single car in a system with N = 3 and L = 30.
The left figure shows the potential energy of a car at fixed position as a function of
its velocity. The right figure shows the potential energy of a car with fixed velocity
as a function of position.

set to the homogeneous solution v(equidistant) = 1.000 and c = ∆x = 10.0.
In figure 7 the functional form of the potential is that of a parabola with its
minimum at the homogeneous solution.
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