
Linear-Quadratic Regulation of
Computer Room Air Conditioners

Author:
Johan Aasa

Supervisor:
Damiano Varagnolo

Winston Garcia-Gabin
Jonas Gustafsson

Academic year 2017/2018

Acknowledgments

I would like to thank my advisors Damiano Varagnolo, Winston Garcia-Gabin,
and Jonas Gustafsson for giving me the opportunity to work with you and your
expert advise throughout the thesis. I would also like to thank Jeffrey Sarkinen
and all the staff at RISE SICS North for supporting this work with their time
and technical expertise.

1

Abstract

Data centers operations are notoriously energy-hungry, with the com-
puting and cooling infrastructures drawing comparable amount of electri-
cal power to operate. A direction to improve their efficiency is to optimize
the cooling, in the sense of implementing cooling infrastructures control
schemes that avoid performing over-cooling of the servers.

Towards this direction, this work investigates minimum cost linear
quadratic control strategies for the problem of managing air cooled data
centers. We derive a physical model for a general data center, identify
this model from real data, and then derive, present and test in the field
a model based Linear-Quadratic Regulator (LQR) strategy that sets the
optimal coolant temperature for each individual cooling unit. To validate
the approach we compare the field tests from the LQR strategy against
classical Proportional–Integral–Derivative (PID) control strategies, and
show through our experiments that it is possible to reduce the energy
consumption with respect to the existing practices by several points per-
cent without harming the servers within the data center from thermal
perspectives.

2

Contents

1 Abbreviations 5

2 Nomenclature 6

3 Introduction 8

4 Roadmap 9

5 Models for the thermal dynamics 10
5.1 Graphic description of the considered system 10

5.1.1 Computer Room Air Conditionings (CRACs) 10
5.1.2 From CRACs to servers 11
5.1.3 Servers . 11
5.1.4 From servers to CRACs 13

5.2 Standing hypotheses . 13
5.3 Dynamics of the volumes of the flows 14
5.4 Dynamics of the temperatures of the flows 15
5.5 Discretization . 16
5.6 ARX model . 16

6 State space representations for the case constant flow 17
6.1 Notation for State Space (SS) models 17
6.2 Model 1 - No time delays, air fractions constant in the whole data

center . 18
6.3 Model 2 - No time delays, but air fractions depending on the server 19
6.4 Model 3 - Complete . 19
6.5 Model 4 - ARX model . 20

7 Control strategies design 21
7.1 PID Control . 21

7.1.1 General theory . 21
7.1.2 PID controllers for our specific CRAC control problem . . 22
7.1.3 P control . 22
7.1.4 PI control . 22

7.2 LQR Control . 22
7.2.1 LQR for our CRAC control problem 23
7.2.2 LQRi control . 23

8 SICS ICE data center 24
8.1 Module 2 . 24

8.1.1 Servers . 24
8.1.2 Sensors . 24

8.2 Description of the native CRAC control strategy 25
8.3 Limitations in control . 25

3

9 System identification 26

10 In silico tests 28

11 Field experiments 29
11.1 Open loop . 29
11.2 P control . 29
11.3 PI control . 32
11.4 LQR control . 32
11.5 LQRi control . 32

12 Conclusions and future work 39
12.1 Conclusions . 39
12.2 Future works . 39

A Appendix 41
A.1 Derivation of model a case specific time-delay (5) 41
A.2 Solution to the LQR-problem via Batch approach 42

A.2.1 Following reference signals 43
A.3 Datacollection/closing the control loop 44

A.3.1 Datacollection required for system identification 44
A.3.2 Datacollection required for system control 45
A.3.3 OPC . 45
A.3.4 Modbus . 45
A.3.5 SNMP . 45

4

1 Abbreviations

CRAC Computer Room Air Conditioning

SS State Space

LQR Linear-Quadratic Regulator

LQRi Linear-Quadratic Regulator with Integral Action

MPC Model Predictive Control

SISO Single Input Single Output

MIMO Multiple Input Multiple Output

SIMO Single Input Multiple Output

LTI Linear Time Invariant

RISE Research Institute of Sweden

SICS Swedish Institute of Computer Science

ARX Autoregressive Exogenous

PID Proportional–Integral–Derivative

P Proportional

PI Proportional-integral

EU European Union

PEM Prediction-Error identification Methods

MPC Model Predictive Control

OPC Open Platform Communication

SNMP Simple Network Management Protocol

PLC Programmable Logic Controller

MIB Management Information Database

5

2 Nomenclature

6

Variable Description
t time index (both continuous and discrete)

iinI CRAC index
jinJ Rack index
kinK Server index
I set of the CRACs indexes
J set of racks indexes
K set of the server indexes

Tj,k,in Temperature of the air flow at the inlet of server j, k
Tj,k Internal temperature of server j, k

Tj,k,out Temperature of the air flow at outlet of server j, k
Ti,in Temperature of the air flow at the inlet of CRAC i
Ti Internal temperature of CRAC i

Ti,out Temperature of the air flow at the outlet of CRAC i
Tservers,in vector of all the temperatures of the air flows at the inlet of the

various server
Tservers vector of all the internal temperatures of the various server
Tservers,out vector of all the temperatures of the air flows at the outlet of

the various server
si→j,k Fraction of flow from CRAC i that enters server j, k
sj,k→i Fraction of air exiting server j, k and returning to CRAC i
fj,k,in Flow entering server j, k
fj,k,out Flow exiting server j, k
fi,in Flow entering CRAC i
fi,out Flow exiting CRAC i
αsT Parameter summarizing the heat capacity of the air and the

thermal conductivity of a generic server (see (10))
αsp Self-heating parameter of a generic server (see (10))
αsf Parameter defining the internal decay of flow within a server

(see (3))
αcT Parameter summarizing the heat capacity of the air and the

thermal conductivity of a generic CRAC (see (8))
αcp Self-heating parameter of a generic CRAC (see (8))
αcf Parameter defining the internal decay of flow within a CRAC

(see (1))
αsj,k Vector of the thermal conductivities among all the various

servers in the data center and server j, k
β∗o Substitution parameter for α∗oTs in the discrete cases
pj,k Current power usage of server j, k
uj,k Current flow forced by the internal fans of server j, k
pi Current power usage of CRAC i
ui Current flow forced by the internal fans of CRAC i

∆i→j,k time that it takes for the flow generated by CRAC i to reach
server j, k

∆j,k→i time that it takes for the flow generated by server j, k to reach
CRAC i

pj,k,avg Average power usage of server j, k
ωp The random aspect of the server usage considered as white noise

with zero mean
Zi The subspace of j, k influenced by CRAC i

Table 1: Notation used throughout the document.

7

3 Introduction

Data centers are an increasingly significant part of today’s society with a growing
societal demand for data storage and analysis. They are increasing in number,
size and complexity, and as a direct effect of this their aggregated energy usage
is also increasing. For example in 2013 data centers in the European Union (EU)
alone consumed 11.8 GW on average with a growing rate of 4 % annually. This
was roughly 3 % of the total electricity generated across EU which correlates
to 38.6 million tonnes of CO2 emitted [1]. Since the demand for data will
not decrease any time soon, there is a great incentive to make more energy
efficient data centers. Among the many ways of improving energy efficiency in
datacenters, the one that will be the focus of this thesis is improving the way
thermal cooling is performed. This is because the energy usage associated to
cooling may be very high: according to [2], the percentage of electricity that
goes into cooling in a data center may be up to 40% of the total figure. In
this thesis we will thus specifically try to improve the control of the CRACs
units in air cooled data centers. Investigating minimum cost linear quadratic
control strategies for the CRACs. We derive a physical model for a general data
center, identify this model from real data. We also apply a black box method of
identifying a model from real data by testing different standard models. Then
derive, present and test in the field a model based LQR strategy that sets the
optimal coolant temperature for each individual cooling unit. To validate the
approach we compare the field tests from the LQR strategy against classical
PID control strategies. For ease of readability, we describe the steps followed in
our work and the intuitions behind them in the next section through a dedicated
road-map.

8

4 Roadmap

The work flow for the project, in the sense of the list of the tasks that had
to be done in order to reach the result of obtaining a strategy for controlling
the cooling units within a data center that is more effective than the current
practice, is the following:

1. start by finding a physical model for the thermal dynamics of the system
under consideration, that comprises:

• inspecting what are the effects of the humidity of the air;

• understanding how potential time-delays of the volume flows within
the built environment can affect the overall thermal dynamics;

2. restructure the physical model found in the previous step in a control-
oriented way, that comprises also:

• discretizing continuous-time models into discrete-time control ori-
ented models;

• inspecting the connections of these models with classical Autoregres-
sive Exogenous (ARX) models;

• considering that the aim is to design LQR strategies, derive SS rep-
resentations of the models above;

3. derive different control strategies, so that it will be possible to draw com-
parative results. This comprises:

• deriving classical reactive controllers such as P and PI;

• derive optimal controllers such as LQR and Linear-Quadratic Regula-
tor with Integral Action (LQRi) (the latter so to cope with potential
uncertainties in the model descriptions);

4. implement a system that enables the real time collection of data from the
datacenter and that allows sending control signals to the infrastructure;

5. perform experiments where we manipulate the various variables involved
in the system, so that it is possible to apply suitable system identification
algorithms for estimating the parameters of the models defined above.
This comprises:

• designing, running and processing the experiments;

• performing parameter estimation steps for the various derived mod-
els;

6. implement, debug and test the so-obtained controllers on the field;

7. think at what the evidence is saying to us.

9

5 Models for the thermal dynamics

This section describes the general setup of a general air-cooled data center,
presents a description of the dynamics of the volume flows and temperatures
in this general data center setup, and eventually combines these dynamics in a
discrete physical model.

All the notation is collected in Table 1 on page 7.

5.1 Graphic description of the considered system

The general structure of most air-cooled data centers is that the servers are
situated in racks placed in rows that create different aisles with temperature
gradients. Air-cooled servers are typically endowed with fans that cool these
servers locally; the built environment moreover presents some CRACs control-
ling the ambient temperature in the server room. Figure 1 depicts this general
structure.

CRAC 1

u1

T1

CRAC 2

u2

T2

CRAC 3

u3

T3

m
ix

in
g

of
air

fl
ow

s
from

C
R

A
C

s
to

servers

m
ix

in
g

o
f

a
ir

fl
ow

s
fro

m
servers

to
C

R
A

C
s

m
ix

in
g

o
f

air
fl

ow
s

from
servers

to
C

R
A

C
s

f1,out

T1,out

f1,∈

T1,∈

f2,out

T2,out

f2,∈

T2,∈

f3,out

T3,out

f3,∈

T3,∈

rack 1

server 1,1

u1,1, p1,1

T1,1

f1,1,∈

T1,1,∈

f1,1,out

T1,1,out

server 1,2

u1,2, p1,2

T1,2

f1,2,∈

T1,2,∈

f1,2,out

T1,2,out

rack 2

server 2,1

u2,1, p2,1

T2,1

f2,1,∈

T2,1,∈

f2,1,out

T2,1,out

server 2,2

u2,2, p2,2

T2,2

f2,2,∈

T2,2,∈

f2,2,out

T2,2,out

Figure 1: Graphical and simplified description of the system under considera-
tion.

5.1.1 CRACs

As show in Figure 1, the room can be logically divided in four zones. The first
zone corresponds to the one defined by the CRAC units. Consider then that
an airflow fi,in with a temperature Ti,in enters the top of the various CRACs;
the air flow is then altered by the CRAC’s internal fan (whose rotational speed

10

Figure 2: Photo of one of the CRAC units used in our experiments.

is represented by ui), plus cooled down by the CRAC’s cooling coils, whose
temperature is Ti. This eventually results in the CRACs outputting a new air
flow fiout at the new temperature Ti,out.

5.1.2 From CRACs to servers

The second zone within the logical division that we made for the computer room
is the space between the CRACs and the servers, as shown in Figure 3. Here
the airflow fi,out with the temperature Ti,out exits the CRACs. This air gets
then mixed on its way to the servers and a fraction of the airflow fj,k,in with
the temperature Tj,k,in enters each server. This fraction is determined by the
dynamics described by si→j,k.

5.1.3 Servers

The third zone in our logical division is represented by the servers (graphically
shown in Figure 4). Here the airflow fj,k,in with the temperature Tj,k,in enters
a server. This flow is then altered by the servers internal fan, whose rotational
speed is represented by uj,k, and is moreover heated up by the servers internal
temperature Tj,k. The final result is that the servers output a new air flow
fj,kout with a new temperature Tj,k,out.

11

Figure 3: Photo of the space that lies between the CRACs and the servers for
the system that we used in our experiments.

Figure 4: A Dell R430 server.

12

Figure 5: Photo of the hot aisle of the data center we used in our experiments.

5.1.4 From servers to CRACs

The fourth zone is the space between the servers and the CRACs as shown in
Figure 5. Here the airflow fj,k,out with the temperature Tj,k,out exiting each
server gets mixed in its way towards the various CRACs. The resulting air flow
can be represented through its flow fi,in and temperature Ti,in. In this way the
cycle of the air flow is closed.

5.2 Standing hypotheses

In our following derivations we assume that:

• there are no air leakages within servers and within the computer room
(notice that high air leakage leads to greater non-linearity);

• at least theoretically, each air flow from each CRAC unit affects each
server; the degree of affecting is captured by some parameters that we
have to identify from real data.

Notice that some other case-specific assumptions will be introduced when de-
riving the different models of the thermal dynamics within the data center.

13

5.3 Dynamics of the volumes of the flows

This subsection describes what happens to the volumes of the flows when they
pass through the various zones of the data center room. Referring to Figure 1,
the volumes of the flows are modified in four specific points:

1. inside the CRACs;

2. from the CRACs to the servers;

3. inside the servers;

4. from the servers to the CRACs;

More specifically, we postulate that the volumes of the air-flows are modified
through the following respective static time-delayed relationships:

fi,out(t) = αcffi,in(t) + ui(t) (inside the CRACs) (1)

fj,k,in(t) =
∑
i

si→j,kfi,out(t−∆i→j,k) (from CRACs to servers) (2)

fj,k,out(t) = αsffj,k,in(t) + uj,k(t) (inside the servers) (3)

fi,in(t) =
∑
j,k

sj,k→ifj,k,out(t−∆j,k→i) (from servers to CRACs) (4)

The relations above are based on the following two concepts:

1. Equation (1) describes the flow out from the CRACs as an function de-
pendant on the flow into the CRACs fi,in and the flow ui added by the
CRACs internal fans. Where αcf is a drag coefficient describing internal
flow decay within a CRAC.

2. Equation (2) describes the flow into the servers as a function of the flow
fi,out out from the CRACs. Where si→j,k is the fraction of air exiting
CRAC i entering server j, k. And ∆i→j,k is the time it takes for the flow
generated by CRAC i to reach server j, k.

Importantly, since there are mass-transportation effects, we include in the mod-
els opportune time-delays. As for the model of these time delays, we postulate
that these time delays depend both on the geometry of the computer room and
the speed of the various flows through the relation

∆i→j,k(t) =
φ (di→j,k)

fi,out(t)
(5)

where di→j,k is the physical distance that should be traveled when going from
CRAC i to server j, k, and φ (·) is an opportune function that depends on
geometrical parameters (e.g., the area of the server inlet). Examples of specific
φ’s for specific types of data centers are reported in Appendix A.1.

14

5.4 Dynamics of the temperatures of the flows

This subsection describes what happens to the temperatures of the flows when
they mix. Referring to Figure 1, mixing of flows happens in four specific points:

1. inside the CRACs;

2. from the CRACs to the servers;

3. inside the servers;

4. from the servers to the CRACs;

More specifically, we postulate that when mixing between CRACs and servers
and vice-versa, the mixing is static and time-delayed, with mixing factors that
reflect an averaging between the temperatures of the various air-flows. In other
words, the models are as follows:

Tj,k,in(t) =

∑
i si→j,kTi,out(t−∆i→j,k)∑

i si→j,k
(6)

Ti,in(t) =

∑
j,k sj,k→iTj,k,out(t−∆j,k→i)∑

j,k sj,k→i
(7)

Notice that, as said in Section 5.3, the time delays ∆? at least theoretically
depend on the volumes of the air flows fi,out and fj,k,out.

As for the temperatures of the flows at the output of the components, we
consider a mixed static / dynamic model where we exploit the auxiliary inter-
nal temperature of the component as a state variable. More precisely, we use
a first-order model representing a classical Newton law of cooling comprising
convection (and possibly conduction) effects, plus some self-heating terms.

As for the dynamics relative to the CRACs, thus, our postulated model is

Ṫi(t) = αcT fi,out(t)
(
Ti,in(t)− Ti(t)

)
+ αcppi(t) (8)

Ti,out(t) = Ti,in(t) +
α̃cT

fi,out(t)

(
Ti,in(t)− Ti(t)

)
. (9)

Similarly to the CRACs the dynamics relative to the servers are

Ṫj,k(t) = αsT fj,k,out(t)
(
Tj,k,in(t)− Tj,k(t)

)
+ αsppj,k(t) +αsj,kTservers (10)

Tj,k,out(t) = Tj,k,in(t) +
α̃sT

fi,out(t)

(
Tj,k,in(t)− Tj,k(t)

)
. (11)

Notice that equations (8) and (10) are structurally similar, but different because
the latter has an additional term αsj,kTservers that takes into account the thermal
conductivity between servers (a thermal effect that is not present among the
CRACs).

15

In the case of the CRACs dynamics the self-heating term αcppi(t) is the cool-
ing effect of the coolant. In most cases this term will be dominant in determining
a CRACs internal temperature Ti. If also the cooling power is sufficiently big
the CRACs output temperature Ti,out will also take on the coolants tempera-
ture pi resulting in a simplification of the dynamics in (8) and (9) so that we
can say that

Ti,out(t) ≈ pi(t) (12)

this will become important later on in Section 6 in order to maintain a linear
model when setting up the system model in SS form.

5.5 Discretization

In order to later on simulate and implement in the real hardware the to be
developed model-based controllers we need to discretize the previously postu-
lated dynamics. In this thesis discretization is always done using forward Euler
methods, i.e., by letting

y(t+ 1) = y(t) + Tsf(t). (13)

Applying the forward Euler approach (13) to the differential equation (10) and
substituting β∗o = α∗oTs one then gets the discrete first order linear differential
equation

Tj,k(t+1) = βsT fi,out(t)
(
Tj,k,in(t)−Tj,k(t)

)
+Tj,k+βsppj,k(t)+βsj,kTservers. (14)

5.6 ARX model

To provide a baseline to our derivations, We consider also a black box model
where nothing of the system is know. Then different standard models is applied
to a large data set with large variations gatherer from a real world system. We
then choose the standard model that gave the best result, the best fit, to our
specific real world system. In our case the model that gave the best fit was a
first order ARX model that reads as follows:

Tj,k(t+ 1) = βTj,k(t) + α1Ti(t) + α2fi,out(t) + α3pj,k(t) + α4uj,k(t) (15)

16

6 State space representations for the case con-
stant flow

In this section we derive, from opportune different simplifications of the thermal
dynamics defined in Section 5, different SS models of the system with different
complexities. In this way we will obtain different to-be-identified parametric
models to be used as starting points for our CRAC control strategies. The final
aim will then be to check which strategy is the best one from field experiments.

Importantly, we consider here only situations for which the mass flows of the
various CRACs is constant in time.

6.1 Notation for SS models

Besides the notation introduced in Table 1 on page 7, we now consider some
further notation The simplifications done to the thermal dynamics defined in
Section 5 in order to set up the SS models where based on the standing assump-
tions posed in the relative section. On top of that, firstly we now assume also
that the temperature control of the CRACs coolant pi is sufficiently fast that,
according to (12), we can control the output temperatures Ti,out as we want,
so that Ti,out becomes our control input. Secondly we assume fixed air flows
from the CRACs, so that the various fi,out are to be considered constant. These
assumptions are important since it allows us to decouple the system in a way
that the dynamics (8)-(9) can be ignored. In formulas, this means that

fi,out(t) = fi,out ∀t. (16)

Applying (16) into (5) we thus also obtain

∆i→j,k(t) = ∆i→j,k. (17)

Notice that the fact that the time-delays are constants is very important for
having a state of the system that keeps a constant dimension.

Our state space model will thus have,

as states:
x(t) :=

[
{Tj,k(t)}j∈J ,k∈K

]
as controllable inputs:

uI(t) :=
[
{Ti(t)}i∈I

]
depending on the situation, as either controllable inputs or disturbances:

du(t) :=
[
{uj,k(t)}j∈J ,k∈K

]
dp(t) :=

[
{pj,k(t)}j∈J ,k∈K

]

17

as measurements:

y(t) :=

 {Tj,k(t)}j∈J ,k∈K
{Tj,k,in(t)}j∈Jin⊆J ,k∈Kin⊆K
{Tj,k,out(t)}j∈Jout⊆J ,k∈Kout⊆K

Notice that the flows from the server fans uj,k(t) may not actually manifest
themselves as disturbances since there exists a internal feedback loop within the
servers controlling the fans. So the fan speeds uj,k(t) are actually a transforma-
tion that we may know, or at least be a measurable parameter which could be
inserted into the models below.

To obtain the desired dynamics the general strategy is then to use the ad-
ditional assumptions to simplify opportunely (2), (3), and (6), and then insert
them into (14). Eventually the outcome will be a model with the structure

x(t+ 1) = A?(t)x(t) +B?(t)u(t) +D?dp(t) (18)

where ? = 1, . . . , 3 indicates different models.
Notice that in general the matrix A?(t) may depend on the disturbance du(t),

on the time delays ∆i→j,k, on the flows fi,out imposed by the CRACs, and,
obviously, on the various parameters of the model summarized in the notation
1. Notice moreover that, for control purposes, we measure the whole state so
there is no need for writing the measurement equation since y(t) = x(t).

We now present several models for the studied thermal dynamics with in-
creasing complexity.

6.2 Model 1 - No time delays, air fractions constant in the
whole data center

The first model is also the simplest one; here we assume:

1. the dynamics of the servers temperature changes to be sufficiently slow
that the mass-transportation-induced time delays ∆i→j,k can be ignored;

2. the fraction of air from CRAC i entering into server j, k to be always the
same independently of i, j, and k. This means that, given the notation
above, si→j,k = s.

Notice that with these two assumptions the dynamics of the temperature in (6)
simply becomes

Tj,k,in = Ti,out.

This simplification can then be used to obtain the following state-update equa-
tions through opportunely simplifying the dynamics in (14) that become

A1(t) = diag
(

1− βsT
(
αsf
∑
i

sfi,out + uj,k(t)
))

(19)

18

B1(t) = βsT
(
αsf
∑
i

sfi,out + uj,k(t)
)

(20)

D1dp(t) = βsppj,k(t) (21)

resulting in the discrete SS model

Tj,k(t+ 1) = A1(t)Tj,k(t) +B1(t)Tout(t) +D1dp(t) (22)

with a structure matching the one presented in (18).

6.3 Model 2 - No time delays, but air fractions depending
on the server

Still ignoring the time delay ∆i→j,k, we can now assume to take into account
the fact that different CRACs will produce different fractions of air entering
each server. This means that

A2(t) = diag
(

1− βsT
(
αsf
∑
i

si→j,kfi,out + uj,k(t)
))

(23)

B2(t) = diag
(
βsT
(
αsf
∑
i

si→j,kfi,out + uj,k(t)
)) si→j,k∑

i si→j,k
(24)

D2dp(t) = βsppj,k(t) (25)

resulting in the discrete SS model

Tj,k(t+ 1) = A2(t)Tj,k(t) +B2(t)Ti,out(t) +D2dp(t) (26)

whose structure, like model 1, matches again (18).

6.4 Model 3 - Complete

The third model that we propose mimics the physical dynamics described in
Section 5. With respect to the previous model 2, here we remove the assumption
that the time delay ∆i→j,k can be ignored. When taking this delay into account
the system nonetheless becomes more convoluted. Nonetheless, thanks to the
assumption that the airflows are fixed the time delays ∆i→j,k are constant in
time (see also (17)) and this implies that the dimensions of the state-update
equations remain constant. More precisely, the model looks like the following:

g(j, k; i,∆max, t) =

diag

(
βsT
(
αsf
∑
i

si→j,kfi,out + uj,k(t)
)) si→j,k∑

i si→j,k

0

(27)

D3dp(t) = βsppj,k(t) (28)

19

resulting in the discrete SS model
Tj,k(t+ 1)
Ti,out(t)

Ti,out(t− 1)
...

Ti,out(t−∆max + 1)

 =

A2(t) g(j, k; 1, 1) g(j, k; i,∆max)

0 0 0
0 I 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 I 0

Tj,k,out(t)
Ti,out(t− 1)
Ti,out(t− 2)

...
Ti,out(t−∆max)

+

0
I
0
...
0

Ti,out(t) +D3dp(t).

(29)
Once again the structure of the state space matches the general one described
in (18).

6.5 Model 4 - ARX model

For completeness we also consider the ARX model presented in (15). This can
be rewritten in a SS form as

Tj,k(t+ 1) = A4Tj,k(t) + +B4Ti(t) +D4dARX(t) (30)

whereA4 = β, B4 = α1, D4 = [α2 α3 α4] and dARX(t) = [fi,out(t) pj,k(t) uj,k(t)]′.
We see that (30) have the same structure as the physical model presented in
(18) with the difference being of being Linear Time Invariant (LTI). This sim-
ilarity will be exploited later on in Section 7 when we derive our LQR control
strategies. Indeed the derived controllers will be based on the same structural
representation of the SS systems – the unique thing that will change will be the
actual dimensions and values of the matrices A, B, C and D.

20

7 Control strategies design

We here present two different control strategies with increasing complexity
strategies that can be used for designing the inputs u(t) in (18). We start
with presenting some variations of the classic PID controller, and then move
on to LQR controllers. Notice that the latter LQR control strategies, defined
in Sections 11.4, will be derived using general formulations, so that it will be
possible to implement the different SS models defined in Section 6 using the
same formulas parametrized in A?(t), B?(t) and D?(t).

7.1 PID Control

PID controllers are widely used in every industrial settings due to their simplicity
in understanding, implementing and tuning them. Interestingly, implementing
these controllers does not require any knowledge of the model of the system to
be controlled. Indeed PIDs control actions are computed starting only from the
values of the measured process variables and the references that they should
follow. Some brief theory on PIDs and their implementation is described below
in Section 7.1.1-7.1.2.

7.1.1 General theory

A PID controller is a feedback controller that continuously calculates the dif-
ference between a desired set point r(t) and the process variable y(t) called
the error e(t). The controller consists of three parts: a proportional term, a
integral term and a derivative term. The proportional term simply generates a
control value that is proportional to the current error e(t). P controllers have
the limitation that if the system is subject to disturbances, then the system will
present steady state errors. To mitigate this drawback one may then use the
second part, i.e., the integral term (whose output is proportional to the sum of
the current error e(t) and past errors e(t − 1) + e(t − 2) + . . . + e(0)). This
integral term may reduce steady state errors, but it may also cause the process
variable to overshoot its desired set point if the sum of the errors has been
charged too much. The third term, i.e., the derivative term, is considered a sort
of predictive controller, since it predicts where the process variable is heading
by calculating the derivative of the error (e(t) − e(t − 1)) 1

∆t , and this may be
helpful to reduce the overshoot. This can all be summed up to give the control
action

u(t) = Kpe(t) +Ki

t∑
i=0

e(t− i)∆t+
Kd

∆t
(e(t)− e(t− 1)) (31)

as a function of the error
e(t) = r(t)− y(t). (32)

21

7.1.2 PID controllers for our specific CRAC control problem

In our specific PID implementation case we test two controllers, one with only
the proportional term from (31) and one with the proportional term and the
integral term. As for the process variable y(t) we consider the average of the
various server temperatures Tj,k, and as a control variable u(t) we consider the
various CRAC outlet temperatures Ti,out (i.e., the latter ones are controlled to
be all equal).

7.1.3 P control

Here only the proportional term from (31) is used resulting in the control signal

u(t) = Kpe(t). (33)

7.1.4 PI control

Here both the proportional and integral term from (31) is used resulting in the
control signal

u(t) = Kpe(t) +Ki

t∑
i=0

e(t− i)∆t. (34)

7.2 LQR Control

LQR controllers constitute a more advanced feedback control strategy than the
PID. With the big difference compared to the PID is that the LQR is a model-
based control strategy, i.e. it requires a model of the system desired to control

x(t+ 1) = Ax(t) +Bu(t). (35)

A quadratic cost function is set up based on the model of the system desired to
control.

J(x0, U0) =

N−1∑
k=0

(x′kQxk + u′kRuk) + x′NQfxN (36)

The optimal control feedback u(t) is then found by minimizing the quadratic
cost function. This is done by calculating the gradient with respect to u, setting
the gradient equal to zero and then solving for u. Q and R in the cost function
is weights. Where Q determines how important it is that the controller keeps
the state x at a minimum. While R determines how important it is that the
control input u is kept low [3].

A brief summary of the main features for our implementations are described
below in Sections 7.2.1 and 11.5.

22

7.2.1 LQR for our CRAC control problem

In general the models that we derived for our system present time-varying A
and B matrices, plus time varying disturbances dp compared with the linear
time invariant LQR problem describe in (35). Our models are thus linear but
time-variant of the form

x(t+ 1) = A(t)x(t) +B(t)u(t) +Ddp(t). (37)

For our control purposes we define the quadratic cost function over the finite
horizon N as

J(xt, Ū) =

t+N−1∑
τ=t

(x′τQxτ + u′τRuτ) + x′t+NQfxt+N (38)

where Ū is the vector of future inputs ut, ut+1 . . . ut+N−1 and xt is the state
vector at the time t. The optimal vector of future inputs Ū∗ over the finite
horizon N can then be derived trough the batch approach described in [3] as

Ū∗(t) = Kx(xt − r) +KcC̄ +B−1
t (r −Atr − ct) (39)

where
Kx = −(R̄+ S̄u′Q̄S̄)−1(S̄u′Q̄S̄xxt) (40)

and
Kc = −(R̄+ S̄u′Q̄S̄)−1(S̄u′Q̄S̄cC̄). (41)

The equations for the derivation of Ū∗(t) are presented in appendix A.2. The
optimal control input is then simply the first value in the optimal vector of
future input, u∗ = Ū∗[1] The control algorithm then consists of applying the
optimal input on the system, wait until the next sampling time t + 1 measure
the state and repeat by calculating the optimal input again. Implementing the
controller in this fashion is also called receding horizon control

7.2.2 LQRi control

To diminish potential detrimental effects on the steady state behavior of the
system of imperfect modelling of the system we also consider adding an integral
term in the LQR controller defined above. Notice that in this case the control
input u(t) is practically the same as the plain LQR plus an integral term, i.e.,

u∗t = Kx(xt − r) +KcC̄ +B−1
t (r −Atr − ct) +Ki

t∑
τ=0

e(t− τ)∆t. (42)

Notice that this structure shares the integral term as in the PI control – here,
nonetheless, Kx and Kc are still the same as in (40) and (41). In any case
anti wind-up strategies were implemented for all the controllers using integral
actions.

23

8 SICS ICE data center

Throughout this project we had access to the data center Swedish Institute of
Computer Science (SICS) ICE in order to conduct experiments in a real world
environment. At SICS ICE we conducted our experiments in their module 2,
which is a server room intended for testing of facility and utility innovations[4].
Down in Section 8.1 the set-up of module 2 is described. Access to this data
center was provided by Research Institute of Sweden (RISE) SICS North which
is a research center situated in Lule̊a with a focus on data center research [5].

8.1 Module 2

The module 2 server room was set-up with ten racks of servers in two columns
of five racks each. The two columns are places so the racks exhaust facing each
other creating a hot aisle in the middle of the room seen in Figure 5. The
room is outfitted with four CRACs two places in each end of the room seen in
Figure 3. They supply the server inlets with cold air creating two cold aisles.
So cold air exits the CRACs, enters the servers, heats up, exits the servers, rises
and recirculates back to the CRACs, it enters at the top of the CRACs and
is cooled down, the cycle continues as described in Section 5 and visualized in
Figure 1.

8.1.1 Servers

The ten racks in module 2 were fitted with three different types of servers. Racks
1-3 were fitted with seven HPE BladeSystem c7000 Enclosures containing 32
servers each. These enclosures were all turned of during experiments with the
exception of one enclosure in rack 1.

The two remaining server models were Dell poweredge r430 and Dell pow-
eredge r530. These two models are similar in hardware, being both outfitted
with two CPUs places following each other as in Figure 4. The main difference
between the two models is that the r430 is thinner and fitted with 12 40 mm
cooling, while the r530 is thicker and fitted with 6 60 mm cooling fans.

Racks 4-7 were fitted with the thinner r430 servers. Each rack housing 30
r430 servers with the exception of rack 4 that only housing 26. While the
remaining racks 8-10 were fitted with thicker r530 servers. Each rack housing
16 r530 servers. The total numbers of Dell servers in racks 4 trough 10 summed
up to 164 servers. These 164 servers made up our state x(t) or process variable
y(t) to be controlled.

8.1.2 Sensors

Module 2 was outfitted with a wide arrange of different sensors. The data
we needed were from sensors that correlating with the variables in our models
from Section 6. Both CPUs inside the DELL servers had sensors measuring
their temperature. We defined the average of these two temperatures as the

24

server temperature Tj,k, our state x(t) or process variable y(t). In addition the
system comprises sensors for measuring the temperature of the cooling water
pi(t). Notice that, according to (12), we can say that this variable has the same
value as the CRAC outlet temperature Ti,out, i.e., our control variable u(t).

In addition to the previous information, we were allowed to measure the
speed (in rpm) of the various servers cooling fans. These variables were defined
as the flow forced by the internal server fans, i.e., uj,k. Finally we were able
to measure also the CRACs fan usage in percent, defining the flow exiting the
CRACs fi,out. Finally, dedicated sensors measure each server usage pj,k in
watts.

Large datasets were gathered from these sensors, and this was then used
to identify a numerical estimate of the model parameters, as described in the
next Section 9. Appendix ?? describes how the real time monitoring and con-
trol of the server room was implemented on top of RISE SICS North building
management system.

8.2 Description of the native CRAC control strategy

During the normal operations of the module 2 server room, the cooling water is
kept at a constant temperature. The control variable is instead the fan speed
of each CRAC, which is controlled via independent P feedback loops starting
from the temperature readings from a sensor placed in front of each CRAC at
the server inlet side. The sensor can be seen in Figure 3 as the white box at the
server inlet.

8.3 Limitations in control

Due to limitations in the infrastructure used for our field experiments, it was
not possible to control the temperature of the coolant supplied to the CRACs
individually. This implies that the temperature of the air flows from all the
different CRACs is structurally limited to be the same, and this reduces for
our specific case Ti,out to be just Tout – which in return limits the possibility of
implementing controllers dedicated to our models 2 and 3.

Moreover the cooling water supplied to the CRACs in module 2 had a rec-
ommended max/min temperature (respectively 16◦C and 23◦C) that limited
the control signal u(t) usable when implementing the controllers.

25

9 System identification

Assume to have collected data about server temperatures, usage levels, power
consumptions, CRAC cooling levels and their fan speeds through the software
interfaces developed in this thesis and by RISE SICS North. It is then possible
to use this information to estimate the parameters defined in Section 5 through
system identification approaches.

Since the aim of the thesis is to develop control algorithms, the statistical
paradigm that should be followed in this estimation step is the standard one
of estimating the unknown parameters as that ones that maximize the pre-
dictive capabilities of the to-be-identified model. We thus make the standard
assumption that the noises corrupting the various measurement and processes
are Gaussian, and consider quadratic costs as loss functions. In general, thus,
assuming that models such as (14) are used to generate predictions of the tem-
peratures, then the loss has the structure

J (θ) :=

N−1∑
t=1

(
y(t+ 1)−Ψ (y(t) ; θ)

)2

(43)

where θ captures the model parameters, Ψ is the model, and x(t) denotes the
output of the system at time t, and N is the number of samples in the training
set. This structure of costs leads to the Prediction-Error identification Methods
(PEM) estimation strategy

θ∗ = arg min
θ∈Θ

J (θ) (44)

with the hypothesis space Θ defined opportunely to guarantee the physical
meaningfulness of the various estimated parameters. Once models are obtained
from this identification procedure, it is possible to follow the steps described in
the previous chapters to define the LQR controllers.

Given that in this thesis we have been proposing several parametric struc-
tures for the dynamics of the temperatures, the previous strategy (44) has
been specialized and implemented for each of these structures using the system

identification toolbox in Matlab. Some steps have nonetheless been imple-
mented in the same way irrespectively of the model structure to be identified.
More precisely,

• the process of selecting what should be considered inputs and outputs of
the system was performed at the beginning of the thesis, and its results
are implicitly summarized by the choices performed in Section 5;

• the process of designing the experiments to be performed at SICS was
performed independently of the to-be-identified model structure. The ex-
periments, that will be described in more details in Section 11, consisted in
a series of randomly placed step-changes of the input signals with random
amplitudes;

26

• collecting and processing of the raw data was the same among all the
various identification procedures;

• validation of the identified models was always performed by means of
checking fit indexes on independent validation data.

Incidentally, we report that the best model structure obtained was the ARX one,
with a fit on the validation data of 72 percent. The dataset used for training
and the simulation results on the validation data are plotted respectively in
Figures 6 and 7.

Figure 6: Graph of the training dataset. Where the blue line is the measured
server temperature and the orange line is the server usage from the training
data set.

27

Figure 7: Graph of the simulation results on the validation data. Where the
blue line is the measured server temperature and the orange line is the server
usage from the validation data set. The blue dashed line is the simulated server
temperature that have a fit of 72 % to the measured server temperature.

10 In silico tests

The plan at the start of the project were once the models had been identified
from real world data to run simulations in order to test and tune the different
controllers. But due to time constraints and the desire to test the different
controllers on the real world data center work progressed on to field experiments.

28

11 Field experiments

Five different scenarios were tested the 4 different controllers discussed in Section
7 the simpler P and PI controllers and the model dependent LQR and LQRi
controllers. The final scenario is the reference scenario, the open loop case,
described in Section 8 where the data center control variable is the CRAC fans
speed that are feedback control by temperature sensors at the CRAC inlets.
Experiment set-up was a 2 hours long test were the controllers first ran for 30
min with no server load to reach a steady state then a step in server load up
to 30% for 30 minutes then a second step to 60% in server load for an for an
additional 30 min and final 30 minutes the system had no load once again. For
all 4 controllers the reference value was set to r = 38 degrees.

11.1 Open loop

Figures 8, 9 and 10 shows the field experiments results from the open loop
reference experiment.

Figure 8: Graph of the server temperature and the server load during the open
loop experiment. We that the server temperature increase in a proportional way
in relation to the server load.

11.2 P control

Figures 11, 12 and 13 shows the field experiments results from the P control
experiment.

29

Figure 9: Graph of the server temperature and the CRAC fan speed during the
open loop experiment. We have the system not achieving steady state before
the first step response, but we still see that a increase in the server temperature
doesn’t induce a big response on the control variable, the CRAC fan speed

Figure 10: Graph of the total power usage of the data center during the open
loop experiment. This includes the energy of the cooling water, the CRACs and
all of the IT equipment. We see that the is fairly constant during the entire
run of the experiment with the exception of a peak in the beginning when the
system is settling into a steady state.

30

Figure 11: Graph of the server temperature and the server load during the P
controller experiment. As to be expected we see a proportional relation between
the server temperature and the server usage. The same way as for the open loop
experiment but with lower server temperatures.

Figure 12: Graph of the server temperature and the water temperature during
the P controller experiment. We see quite small changes in control variable,
indicating a bigger Kp could have been used.

31

Figure 13: Graph of the total power usage of the data center during the P
controller experiment. This includes the energy of the cooling water, the CRACs
and all of the IT equipment. We only see small increases in power usage at the
points in time when the server load increased and therefore also cooling power.

11.3 PI control

Figures 14, 15 and 16 shows the field experiments results from the PI control
experiment. We see in figure 14 that the system having problem reaching a
steady state before the load loads was applied. Only by the end of the second
load the system seem to stabilize around the reference value r. This is due to
the integral starting at zero, on could run an experiment finding the integral
at steady state and the use that as a starting value to reduce ramp-up time,
this same problem occurs in the LQRi experiment. We have a big dip in server
temperature when the load goes back to zero due inertia the cold air introduces
to the system. Used the same Kp as for the P controller and from that we saw
that it could have had bigger gain.

11.4 LQR control

Figures 17, 18 and 19 shows the field experiments results from the LQR control
experiment.

11.5 LQRi control

Figures 20, 21 and 22 shows the field experiments results from the LQRi control
experiment.

32

Figure 14: Graph of the server temperature and the server load during the PI
controller experiment. We can see there no longer is a proportional relation
between the server temperature and server usage.

Figure 15: Graph of the server temperature and the water temperature during
the PI controller experiment.

33

Figure 16: Graph of the total power usage of the data center during the PI
controller experiment. This includes the energy of the cooling water, the CRACs
and all of the IT equipment. We see a big drop in power usage when the server
load decreases since the cooling water don’t have to be cooled.

Figure 17: Graph of the server temperature and the server load during the LQR
controller experiment. We see despite the changes in server load the controller
manages to return the system to a steady state but with a error from the
reference r = 38.

34

Figure 18: Graph of the server temperature and the water temperature during
the LQR controller experiment.

Figure 19: Graph of the total power usage of the data center during the LQR
controller experiment. This includes the energy of the cooling water, the CRACs
and all of the IT equipment.

35

Figure 20: Graph of the server temperature and the server load during the LQR
controller experiment.

Figure 21: Graph of the server temperature and the water temperature during
the LQRi controller experiment.

36

Figure 22: Graph of the total power usage of the data center during the LQRi
controller experiment. This includes the energy of the cooling water, the CRACs
and all of the IT equipment.

Figure 23: Graph of the water temperature versus the actual control signal sent.
We see that the water temperature lags behind, this due to how fast it is able
to actually change.

37

Figure 24: The server fan speed vs server inlet temperature. We clearly see that
the server inlet temperature have a dominating effect on the server fan speed.

Figure 25: Histogram of all the server temperatures at one point in time. We
clearly see two separate peaks corresponding to the two different type of servers
in the data center.

38

12 Conclusions and future work

12.1 Conclusions

We derived and identified several models of the thermal dynamics within air-
cooled data centers, and with these dynamics we designed and tested with field
experiments ad-hoc LQR and LQRi controllers for CRAC units. Testing these
controllers against reactive ones (P and PI) we notice that the newly developed
controllers respond faster to changes in the server temperatures, and that enable
reducing the risk of over-cooling the computer rooms. This in its turn can be
associated to energy savings, the goal that we set for ourselves at the beginning
of the work.

Despite successful, the controllers haven’t been tuned accurately – some ex-
periments indicated indeed that performance could have been further improved
having had some more time for testing different parametric setups. Nonetheless
the fact that the developed controllers performed acceptably even if without
having been extensively tested indicates that the proposed solution is, at least
in the system where we performed experiments, robust.

The correlation between the server inlet temperature and server fan speed
is something that makes sense in the open loop case. Since the reference tem-
perature the CRACs tries to keep is the server inlet temperature. But for the
controllers we tested, where the reference temperature the CRACs instead tries
to keep a certain server temperature, this doesn’t make sense. Because when
the server temperatures are low and our CRAC controller pushes hotter air the
server fans will ramp up and when the servers run hot the server fans will slow
down. This behaviour is quite the opposite of what you would like. So also
implementing a controller for the server fans with the server temperature as
reference would probably further improve performance. One specific thing that
would decrease is the spikes in temperature at the step in server load since the
local server fans has a much faster response then the CRACs.

12.2 Future works

This work – and the associated implementation efforts – opens the possibility of
implementing even more advanced control strategies. For example, we suspect
that Model Predictive Control (MPC) strategies would be even better suited
than LQR ones, since these would allow more flexibility in managing the server
temperatures, instead of the LQR case where the controller constantly tries to
reach a certain temperature and does not exploit information about potential
constraints in the control actions or in the state of the system.

An other source of improvement would be running longer experiments and
performing a more thorough system identification of the system. This would
indeed lead to better estimates of the parameters of the physical models, and
this is expected to translate into better control.

As mentioned in sec 12.1 developing controllers for the local server fans that
work in sync with the our CRAC controller rather then in opposition.

39

Finally we think that it is devisable to run further tests and tuning of all the
aforementioned controllers (i.e., P, PI, LQR, LQRi, and MPC), so to benchmark
their performance in a structured way.

40

A Appendix

A.1 Derivation of model a case specific time-delay (5)

∆i→j,k(t) =
φ (di→j,k)

fi,out(t)

This is a derivation of the time delay ∆i→j,k is for the geometry found in module
2 which also is a common geometry for datacenters. The time delay we define
as the time it takes for the air exiting the outlet of CRAC i to reach the inlet of
server j, k. The time-delay will then be equal to the inverse of the air velocity
integrated over the distance travelled from CRAC i to server j, k

∆i→j,k =

∫ di→j,k

0

1

vi→j,k(d)
dd. (45)

If we assume that the total volumetric flow out from the CRACs fi,out will
remain constant on its travel to the servers inlets. It is also possible to assume
that the velocity function is linear

vi→j,k(d) = kd+m. (46)

Using (46) the integral in (45) becomes[
1

k
ln(kd+m)

]di→j,k

0

=
1

k

(
ln(kdi→j,k +m)− ln(m)

)
. (47)

Knowing the velocity vij ,k at two points along the distance di→j,k the linear
velocity function (46) can be determined. We can describe the air velocity
using known entities at two points, the CRAC outlet d = 0 and the server inlet
d = di→j,k. The velocity by which the air leaves the CRAC can be described as
the volumetric airflow divided by the CRACs surface area

vi,out = vi→j,k(0) =
fi,out
ai

. (48)

The velocity at the inlet of the servers is can be described as the fraction of the
airflow entering the server inlet divided by servers inlets surface area

vjk,in = vi→j,k(di→j,k) =
si→j,kfi,out

aj,k
. (49)

Using (46), (48) and (49) we get our velocity function based on measurable
entities

vi→j,k(d) =

si→j,kfi,out

aj,k
− fi,out

ai

di→j,k
d+

fi,out
ai

. (50)

41

Now substituting (50) back into (47)

∆i→j,k =

=
di→j,k

si→j,kfi,out

aj,k
− fi,out

ai

(
ln

(
si→j,kfi,out

aj,k

)
− ln

(
fi,out
ai

))
1

fi,out(t)
=

=
di→j,k

si→j,kfi,out

aj,k
− fi,out

ai

(
si→j,kfi,outai
fi,outaj,k

)
1

fi,out(t)
=

=
di→j,k

si→j,k

aj,k
− 1

ai

ln

(
si→j,kai
aj,k

)
1

fi,out(t)

(51)

A.2 Solution to the LQR-problem via Batch approach

Using the Batch approach described in [3]
Derivation for LQR of a discrete linear time-variant system with a time-

variant disturbance. The system we wish to control

x(t+ 1) = A(t)x(t) +B(t)u(t) +Dd(t) (52)

Applying a sequence of N inputs Ū = [u′t, u
′
t+1...ut+N−1]′ at the time t to the

system model
xτ+1 = Aτxτ +Bτuτ +Ddτ (53)

A quadratic cost function can be defined over N steps into the future called the
horizon

J(xt, Ū) =

t+N−1∑
τ=t

(x′τQxτ + u′τRuτ) + x′t+NQfxt+N (54)

Using (53) all the future states xt, xt+1...xt+N of the system can be expressed
as a function the current state xt the future inputs ut, ut+1...ut+N−1 and the

42

future disturbances dt, dt+1...dt+N−1
xt
xt+1

...
xt+N

 =

I
At
...

At+N−1

xt+

0 · · · · · · · · · 0
BT 0 · · · · · · 0

At+1Bt Bt+1 0 · · · 0
...

... · · ·
. . .

...
At+N−1 . . . At+1Bt At+N−1 . . . At+2Bt+1 · · · · · · Bt+N−1

ut
ut+1

...
ut+N−1

+

0 · · · · · · · · · 0
D 0 · · · · · · 0

At+1D D 0 · · · 0
...

... · · ·
. . .

...
At+N−1 . . . At+1D At+N−1 . . . At+2D · · · · · · D

dt
dt+1

...
dt+N−1

(55)

By defining a notation for the matrices in expression (55) it can be rewritten in
a compact form

X̄ = S̄xxt + S̄uŪ + S̄cC̄ (56)

Then applying the same notation to the cost function

J(xt, Ū) = X̄ ′Q̄X̄ + Ū ′R̄Ū (57)

Substituting (56) into (57) and preforming some algebra

J(xt, Ū) = (S̄xxt + S̄uŪ + S̄cC̄)′Q̄(S̄xxt + S̄uŪ + S̄cC̄) + Ū ′R̄Ū =

x′tS̄
x′Q̄S̄xxt + Ū ′(R̄+ S̄u′Q̄S̄u)Ū + 2x′tS̄

x′Q̄S̄uŪ + 2x′tS̄
x′Q̄S̄cC̄+

2Ū ′S̄u′Q̄S̄cC̄ + C̄ ′S̄c′Q̄S̄cC̄

(58)

Calculating the gradient of (58) with respect to Ū

∇ŪJ(xt, Ū) = (R̄+ S̄u′Ū S̄u)Ū + x′tS̄
x′Q̄S̄u + C̄S̄c′Q̄S̄u (59)

Setting the gradient equal to zero and solving for Ū gives the array of optimal
control

Ū∗ = −(R̄+ S̄u′Q̄S̄)−1(S̄u′Q̄S̄xxt + S̄u′Q̄S̄cC̄) (60)

The first value in the vector Ū is our optimal control u∗t .

A.2.1 Following reference signals

The optimal control in (60) can be written more compact by updating the
notation in order to make further calculations more comprehensible.

Kx = −(R̄+ S̄u′Q̄S̄)−1(S̄u′Q̄S̄xxt) (61)

43

Kc = −(R̄+ S̄u′Q̄S̄)−1(S̄u′Q̄S̄cC̄) (62)

Using this notation equation (60) now looks like

Ū = Kxxt +KcC̄ (63)

Considering we want the system to reach a different equilibrium, say (xd, ud)
the optimal control then becomes

u∗t = Kx(xt − xd) +KcC̄ + ud (64)

Need to determine xd and ud
When the system reaches desired steady state (xd, ud) the system looks like

xd = Atxd +Btud + ct (65)

Want the output to track the reference signal r substitute ud = Nur and xd =
Nxr into (65). Nx = 1 since our desired state is the same thing as our reference
signal xd = r so the substitution gives

r = Atr +BtNur + ct (66)

Solving (66) for Nur
Nur = B−1

t (r −Atr − ct) (67)

Substituting (67) back into (64) and we get the optimal control following the
reference signal r

u∗t = Kx(xt − r) +KcC̄ +B−1
t (r −Atr − ct) (68)

A.3 Datacollection/closing the control loop

In order to control the system we need to be able to measure the process/state
variable Tj,k = x = y and be able to set the input Ti = u in real time. For the
LQR controller a model of the system is also required. And in order to model
the system we need to gather large amounts of data of the different variables
effecting the system. Those being, in addition the the ones mentioned above, the
server load pj , k, the server fan speed uj,k and the CRAC fan speed fi,out. We
also require real time collection of these variables when implementing the LQR
controller. The way this was done is what will be described in this appendix

A.3.1 Datacollection required for system identification

In order to get a good and robust model that is capable of operating i many
different scenarios we need a large dataset with big variations. So experiments
are run in SICS ICE Module 2 were we vary the different variables that we could
set at will. Those being the CRACs fan speed, the water temperature to the
CRACs and the server load. The remaining variables in the system (the server
temperature and server fan speed) could not be set. The server temperature
because it’s a function of all the other variables and the server fan speed because
there were no access to the Dell server software. The datset is collected after the
experiment from a Kairos-database at SICS that logs all sensor measurements.

44

A.3.2 Datacollection required for system control

In order to control the system one doesn’t just need to collect the data but one
needs to the gather, or sample, the data live and with as little delay as possible.
All this was done with a few MATLAB and Python scrips.

A.3.3 OPC

Open Platform Communication (OPC) is a software interface standard that
allows Windows programs to communicate with industrial hardware devices.
OPC is implemented in server/client pairs. The OPC server is a software pro-
gram that converts the hardware communication protocol, i our case Modbus
see section A.3.4, used by a Programmable Logic Controller (PLC) into the
OPC protocol. The OPC client uses the OPC server to get data from or send
commands to the hardware [6].

OPC were used to read and write data to and from the CRACs and the
cooling water, that both were controlled by an PLC.

The OPC client the OPC server were done in Python using the freeopc
package. It was written as a function, thereby reading and writing could be
done from MATLAB using a simple function call.

During my tenure at SICS the OPC server were under heavy load at times.
This heavy load would lead to OPC request timing out which i return lead
to the freeopc package used returning an error crashing the main MATLAB
script. Diving into the freeopc package was something there neither was time or
knowledge to do. So after having multiple experiments fail due to this problem
reading and writing from and to the CRACs and the cooling water was changed
to Modbus, see section A.3.4 below.

A.3.4 Modbus

The Modbus Protocol is a messaging structure used to establish master-slave/client-
server communication between intelligent devices [7].

Due to the problems with OPC reading and writing from and to the CRACs
and the cooling water were switched to Modbus. This was a more direct way
of communication since Modbus communicates directly with the PLCs in the
data center.

The Modbus implementation was also done in Python. It used the pymodbus
package and written as a function in similar fashion to the OPC implementation.
After the switch to Modbus the control of the CRACs became more robust and
faster.

A.3.5 SNMP

Simple Network Management Protocol (SNMP) is an application–layer proto-
col for exchanging management information between network devices. SNMP
consists of of the managed devices (servers, switches, routers...) all running an
SNMP Agent that collects the various variables from the devices locally and

45

making it available to be queried for by a SNMP Manager. For the manager
to be able to request specific information from the clients all the agents have
a Management Information Database (MIB) describing all the device variables
available, the manager is then loaded with the matching MIB [8].

SNMP was implemented in a python scrip using the PySNMP package. It
was at first written as a function like the OPC scrip. The function failed to work
when called from MATLAB despite working when called from cmd prompter.
The script was rewritten saving the data to a matfile that could be read from
MATLAB. The script sent the SNMP requests asynchronously i.e. sent all the
requests at once instead of waiting for the previous one to be completed. An
synchronous implementation would have been to slow considering the sampling
time and the number of servers.

SNMP were used to gather all the data needed from the servers. Those
being the power usage of each server, the temperature of both CPUs in each
server and the speed of one fan in each server. The choice to only gather fan
speed data from one fan per server were due to time constraints, the time to
collect more would have taken to long time compared to our sampling time. The
data were already gathered through asynchronous SNMP in order to improve
performance.

46

References

[1] Pedca final report summary. technical report. 2014.

[2] Y Wen M Dayarathna and R Fan. Data center energy consumption modeling:
A survey. IEEE Communications Surveys and Tutorials, 18(1):732 – 794,
2016.

[3] A. Bemporad F. Borelli and M. Morari. Predictive Control for linear and
hybrid systems. 2015.

[4] Sics ice. https://www.sics.se/projects/

sics-ice-data-center-in-lulea.

[5] Rise sics north. https://www.sics.se/groups/rise-sics-north.

[6] What is opc. http://www.opcdatahub.com/WhatIsOPC.html.

[7] Modbus faq. http://www.modbus.org/faq.php.

[8] What is snmp. https://www.manageengine.com/network-monitoring/

what-is-snmp.html.

47

