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Calibration: an essential task in robotics
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How is calibration usually done?
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DRAWBACKS:
really expensive
set up is time consuming
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Aim

assume the surrounding environment to be structured:
how can we transform this info into calibration strategies?
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Problem Formulation

Algorithms

Results
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Example of a typical sensor
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Problem formulation: modelling
Assumptions

no access to groundtruth
robot moves on flat areas
environment does not change

Our model of the sensor readings:
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∑
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our problem: estimate the αi’s and βi’s
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Landmarks-based algorithms

Landmarks = easily recognizable features that do not move

Examples:
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Algorithm 1: Carnot’s algorithm

DATA:
distance between lidar and landmarks
angle from which lidar sees the landmarks

IDEA: exploit Carnot theorem:
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+ c2
− 2bc cosα

PROBLEMS:
expensive computation due to non linear minimization
biased estimator Ô⇒ not consistent!
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Algorithm 2: Sine theorem algorithm

ASSUMPTIONS:
the robot moves along a straight line
the sensor takes measurements with a fixed step

Ô⇒ use the Sine Theorem:
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we can estimate all the
distances dL,i:

dL,i =
li ⋅ sin τL,i

sin γL,i
.

x

y
A

B

S1

dA,1

dB,1

S2

l1

dA,2

dB,2

γA,1

φA,1

τA,1

S3

l2

dA,3

dB,3

S4
l3

dA,4

dB,4

PROBLEMS:
generally bad estimates for long distances due to small error of angles
measurements
not robust: not perfectly straight trajectories Ô⇒ big errors
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Algorithm 3: Minimization algorithm

ASSUMPTIONS:
the robot moves along a straight line
the sensor takes measurements with a fixed step

x

y

S1 S2

S3

S4

l1

l2

l3

A

14



Problem Formulation

Algorithms

Results

15



Results

Comparison of results: ratio between Mean Squared Error of raw data and of estimated
ones

MSE ∶= ∑
n
i=1 (xi − x̂i)

2

n

MSE ratio = MSE(raw data)
MSE(estimated data)

MSE ratio
Carnot Sine Minimization

0.9 0.5 4.2
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Conclusions

sensors can be calibrated exploiting the structure of the environment
this calibration requires assumptions on the trajectory of the sensor in the
surrounding environment
this calibration leads to results comparable to the ones achieving with
sophisticated instruments (but our procedures are easier to perform)
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Future works

Scanning forests

Lidar on flying robots

Wall-based and landmark-based
calibration combined Continuous calibration
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Thanks for the attention
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