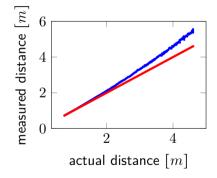
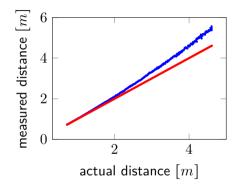
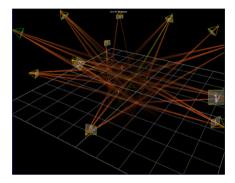
Calibrating Lidars in structured environments

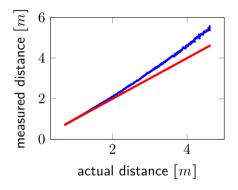
Author: Giovanni Pierobon Supervisors: Damiano Varagnolo Anas Alhashimi Ruggero Carli

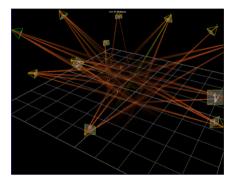
University of Padova






Calibration: an essential task in robotics




How is calibration usually done?

How is calibration usually done?

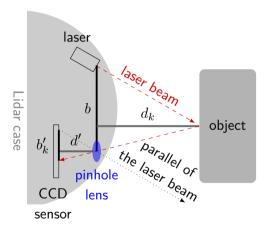
DRAWBACKS:

- really expensive
- set up is time consuming

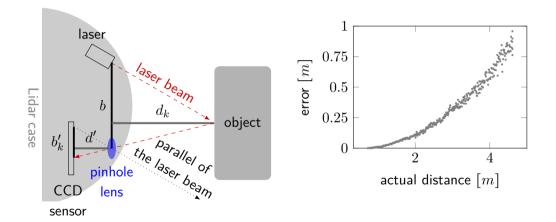
assume the surrounding environment to be structured: how can we transform this info into calibration strategies?

Problem Formulation

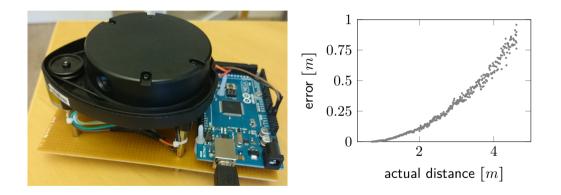
Algorithms



Problem Formulation


Algorithms

Example of a typical sensor



Example of a typical sensor

7

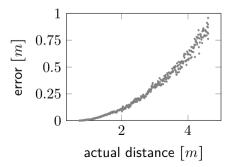
Example of a typical sensor

Problem formulation: modelling

Assumptions

- no access to groundtruth
- robot moves on flat areas
- environment does not change

Problem formulation: modelling


Assumptions

- no access to groundtruth
- robot moves on flat areas
- environment does not change

Our model of the sensor readings:

$$r_k = \underbrace{\sum_{i=0}^{n} \alpha_i d_k^i}_{\text{bias}} + \underbrace{\sum_{i=0}^{n} \beta_i d_k^i e_k}_{\text{noise}}$$

our problem: estimate the α_i 's and β_i 's

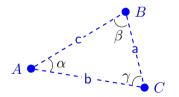
Problem Formulation

Algorithms

Landmarks-based algorithms

Landmarks = easily recognizable features that do not move

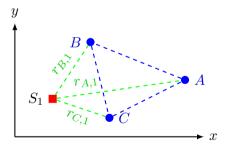
Examples:



DATA:

- distance between lidar and landmarks
- angle from which lidar sees the landmarks

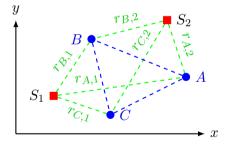
IDEA: exploit Carnot theorem:



$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

DATA:

- distance between lidar and landmarks
- angle from which lidar sees the landmarks


$$\widehat{AB}_{k}^{2} = r_{A,k}^{2} + r_{B,k}^{2} - 2r_{A,k}r_{B,k}\cos\phi_{AB,k}$$
$$\widehat{BC}_{k}^{2} = r_{B,k}^{2} + r_{C,k}^{2} - 2r_{B,k}r_{C,k}\cos\phi_{BC,k}$$
$$\widehat{CA}_{k}^{2} = r_{C,k}^{2} + r_{A,k}^{2} - 2r_{C,k}r_{A,k}\cos\phi_{CA,k}$$

DATA:

- distance between lidar and landmarks
- angle from which lidar sees the landmarks

$$\widehat{AB}_{k}^{2} = r_{A,k}^{2} + r_{B,k}^{2} - 2r_{A,k}r_{B,k}\cos\phi_{AB,k}$$
$$\widehat{BC}_{k}^{2} = r_{B,k}^{2} + r_{C,k}^{2} - 2r_{B,k}r_{C,k}\cos\phi_{BC,k}$$
$$\widehat{CA}_{k}^{2} = r_{C,k}^{2} + r_{A,k}^{2} - 2r_{C,k}r_{A,k}\cos\phi_{CA,k}$$

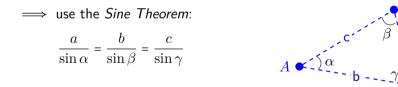
DATA:

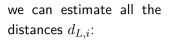
- distance between lidar and landmarks
- angle from which lidar sees the landmarks

PROBLEMS:

- expensive computation due to non linear minimization
- biased estimator ⇒ not consistent!

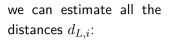
Algorithm 2: Sine theorem algorithm

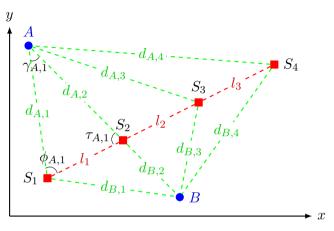

ASSUMPTIONS:

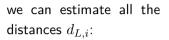

- the robot moves along a straight line
- the sensor takes measurements with a fixed step

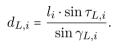
Algorithm 2: Sine theorem algorithm

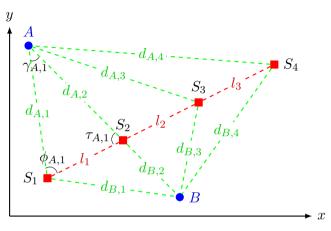

ASSUMPTIONS:


- the robot moves along a straight line
- the sensor takes measurements with a fixed step

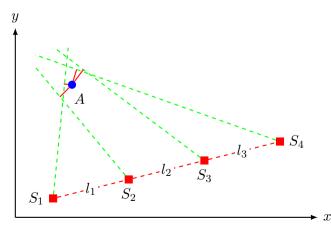



$$d_{L,i} = \frac{l_i \cdot \sin \tau_{L,i}}{\sin \gamma_{L,i}}.$$





$$d_{L,i} = \frac{l_i \cdot \sin \tau_{L,i}}{\sin \gamma_{L,i}}.$$


PROBLEMS:

- generally bad estimates for long distances due to small error of angles measurements
- not robust: not perfectly straight trajectories \implies big errors

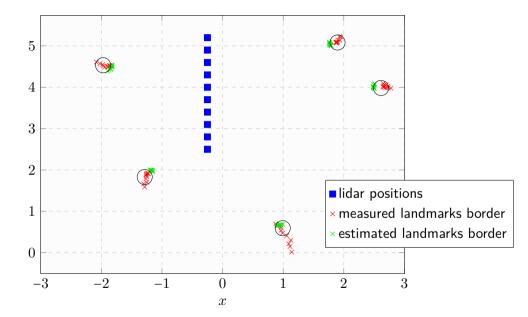
Algorithm 3: Minimization algorithm

ASSUMPTIONS:

- the robot moves along a straight line
- the sensor takes measurements with a fixed step

Problem Formulation

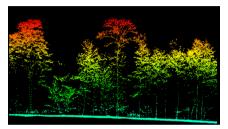
Algorithms

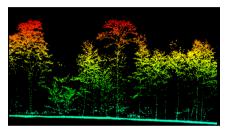

Results

Comparison of results: ratio between Mean Squared Error of raw data and of estimated ones

$$\mathsf{MSE}\coloneqq rac{\sum_{i=1}^n \left(x_i - \widehat{x}_i
ight)^2}{n}$$

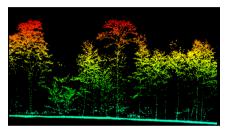
$$MSE ratio = \frac{MSE(raw \ data)}{MSE(estimated \ data)}$$


MSE ratio		
Carnot	Sine	Minimization
0.9	0.5	4.2


y

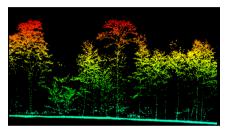
Conclusions

- sensors can be calibrated exploiting the structure of the environment
- this calibration requires assumptions on the trajectory of the sensor in the surrounding environment
- this calibration leads to results comparable to the ones achieving with sophisticated instruments (but our procedures are easier to perform)


Scanning forests

Scanning forests

Lidar on flying robots



Scanning forests

Lidar on flying robots

Wall-based and landmark-based calibration combined

Scanning forests

Lidar on flying robots

Wall-based and landmark-based calibration combined

Continuous calibration

Thanks for the attention

