
1 Rules

1.1 General

Use no accented letters or extended ASCII characters. Ev-
erything has to be written in plain english. No code-warnings
are admitted.

1.2 Names

Use capitalization instead of underscores. Use the following
Hungarian-like notation for prefixes:

t struct str string
cl class ch char
h handle b boolean
i integer a array
f float aa array of array
d double

Give classes, variables, functions, etc. descriptive, di↵eren-
tiable names. Things that are related should have similar
names, while things that are not should not. Keep the names
up-to-date. If functionality changes, update the name.

Notice: if you call your variables a, b, c, then it will be
impossible to search for instances of them using a simple text
editor. The same for misspellings: by misspelling in some
function and variable names, and spelling it correctly in oth-
ers (such as SetPintleOpening SetPintalClosing) you avoid
the use of e↵ective text-search techniques.

1.3 Spacing

Here there is famous haiku on the consistency of spacing:

Anybody who mixes tabs and spaces
for indentation
will spend an eternity burning in hell.

Most important rule: BE CONSISTENT. Other rules:

1. identation must be performed using only tabs;

2. tab width in the editors must be of 4 spaces;

3. always place spaces:

(a) after any commas;

(b) on both sides of any binary arithmetic or logical
operators other than multiplication or division;

4. expand code over multiple lines and make matching
parenthesis appear in the same column.

Thus write f(a, b, c) instead of f(a,b,c).

1.4 Functions

1. write functions that fit on one screen;

2. keep block nesting to a minimum;

3. think of those that come after you;

4. use less code: the less code you have, the less there is to
maintain and to fix. Get rid of unused functions / code;

5. when possible, write error-checking software.

1.4.1 Comments

Always provide

1. a few sentences before the procedure/function saying
what it does;

2. a description of the values being passed into it;

3. a description of what it possibly returns;

4. inside the function, comments that split the code up into
shorter tasks;

5. for chunks of code that seem thorny, a quick explanation
of what is happening.

Comment like a smart person. Bad examples:

% Now we increase Number_of_sensors by one.
Number_of_sensors = Number_of_sensors + 1;

function Output = XXX(Inputs)
... zillions of code rows without comments ...
return Output
% so we are done

2 General tips

Hard-coding = EVIL. Moreove, citing Donald Knuth, “Pre-
mature optimization is the root of all evil.”. Simple code is
faster to write, faster to understand when you return to it
later, and faster to debug. Write programs like stereotypical
old grannies drive.

3 Bugs management

Implement and maintain a bugs-database with entries:

1. complete steps to reproduce the bug;

2. expected behavior;

3. observed (buggy) behavior;

4. who it’s assigned to;

5. whether it has been fixed or not.

Note: highest priority is to eliminate bugs before writing any
new code.

