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Newton-Raphson consensus for distributed convex optimization

Distributed optimization and its importance

Problem formulation

min, Flx) = SN, ()
subject to X e X,
X, fi(x) are convex

Multi-agents scenario

Networked system where
neighbors cooperate to
find the optimum

Initial proposal

Derivation of the algorithm - step 3 on 3

Algorithm
@ run 2 average consensi (P doubly stochastic):
o yi(0) := £ (xi)xi — £ (xi) yi(k +1) = Pyi(k).
o z(0) := £ (xi) zi(k + 1) = Pz (k)
yi(k)

@ locally compute x;(k) = zi(k)

That's all?
No, must provide 2 little modifications:
e track the changing x;(k)

@ make local estimation step x; = Y1 less aggressive
Zj

1) transformation in a continuous-time system

y(k +1) = PM(y(k) + g(x(k)) — g(x(k — 1))
2(k +1) = PM(z(k) + h(x(k)) — h(x(k — 1)))

~ 11— o) Y(k+1)
x(k +1) = (1 —e)x(k) + 2D
LP=I-KM=1
“u(t) = (1) + g (x(r))
ew(t) = —w(t) + h(x(t))
ey(t) = —Ky(t) + (I — K) [g (x(t)) — v(1)]
e2(t) = —Kz(t) + (I — K) [h (x(t)) — w(1)]

Sy y(t)
x(t) = —x(t) + 2(0)

3) Slow dynamics

If £ is sufficiently small ...

: ~ fa’ve (Xave) . Zl’vzl f;'/ (Xave)
Xave = — -

flte (ave) SN F (Xave)

i.e. a continuous-time Newton-Raphson strategy

Other important properties

o do not require topological knowledge / agents synchronization

@ robust to numerical error and communication noise

Comparisons with a Distributed Subgradient

Algorithm from Nedi¢ Ozdaglar, Distributed subgradient
methods for multi-agent optimization (2009)

] X(c)(k) = Px(k) (consensus step)

Q xi(k+1) = x9(k) — %f,—' (x,.(c)(k)) (local gradient descent)

Numerical comparison

Nedi¢ Ozdaglar Dist. Newton-Raphson
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Illustrative example: quadratic local cost functions

Derivation of the algorithm - step 1 on 3

Simplified scalar scenario

1
fi(x) = 29 (x— b))+ ¢

Corresponding solution

i.e. parallel of 2 average consensi!

The complete algorithm

Definitions
o gi(xi(k)) = " (xi(k))xi(k) — f/(xi(k))
o hi(xi(k)) = £/ (xi(k))

@ bold font = vectorization

Initialization
x(k) = y(k) = z(k) = g(x(—1)) = h(x(-1)) =0

Main procedure
y(k +1) = PM(y(k) + g(x(k)) — g(x(k — 1))
z(k + 1) = PM(z(k) + h(x(k)) — h(x(k — 1)))

x(k +1) = (1 — e)x(k) + sw

2) two-time scales dynamical system

ev(t) = —v(t) + g (x(t))

ew(t) = —w(t) + h(x(t))

ey(t) = —Ky(t) + (I — K) [g (x(t)) — v(t)]
e2(t) = —Kz(t) + (I — K) [h (x(t)) — w(t)]

y(t)
z(t)

x(t) = —x(t) +

If € is sufficiently small . ..
@ first subsystem is much faster than second one

o first subsystem is globally exponentially stable

Robustness properties

Proposition

Assume that f; € C?, f; strictly convex, x* # oo, and

lIx(0) — 1] = p
117 (v(0) ~ y(0))| = &
117 (v(0) ~ y(0))| = 5

There is a positive scalars £, 5,a, 5 and ¢(c, f) : R? = R € C°, s.t. if
e<E&p<pa<afB<fthen

khToo x(k) = ¢(cv, B)1, exponentially

and ¢(0,0) = x*

Comparisons with an ADMM (first-order)

Algorithm from Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation (1997)

Ly =55 [ 60+ 9 (6 — i) + 7 (6 = 2) + " (0 — zi0)

41—zl + 3~z + S~z

Numerical comparison

Bertsekas Tsitsiklis Dist. Newton-Raphson
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And for generic convex cost functions?

Derivation of the algorithm - step 2 on 3

e aib; = f/'(xi)xi — f/(xi)

o b =f/'(x)

Convergence properties

Proposition

Assume that f; € C?, f; strictly convex, x* # +oco, and zero initial
condition. There is a positive & s.t. if ¢ < & then

lim x(k) = x*1, exponentially
k=00

Sketch of the proof
© transform the algorithm in a continuous-time system
@ recognize the existence of a two-time scales dynamical system

© analyze separatedly fast and slow dynamics (standard singular
perturbation model analysis approach)

3) Fast Dynamics (e — 0).

17y(t) = 179(t) == Yave(t) = Vave(t) +Yave (0) —vare (0), (vave = %17y)
172(t) = 1 TW(t) = Zave(t) = Zave(t)+ Wave (0) — Ware (0),  true Ve

v(t) — g (x(t)) fast dynamics
w(t) = h(x(t))

y(t) = (F17g (x(£))) 1 if Yave(0) = Vave(0)

2(t) = (F1Th(x(1) 1 if Zave(0) = Wave(0)

. w17g (x(1)
x(t) = —x(t) + mﬂ, = x(t) = Xave(t)1 slow dyn.
If £ is sufficiently small ...

o first subsystem is much faster than second one

o first subsystem is globally exponentially stable

Experiments description

e circulant graph, N = 30
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e f; = sum of exponentials

Conclusions and bibliography

Conclusions
@ combines Newton-Raphson-like behaviors with average-consensi

o converges to global optimum (convexity and smoothness
assumptions)

@ does not require network topology knowledge
@ minimal agents synchronization (symmetric gossip like)
@ extremely simple to be implemented

@ numerically faster than Subgradient methods but slower than
Alternating Direction Method of multipliers
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