AUTOMATICA.IT 2011

convegnoautomaticaitaliana.org

Filippo Zanella, Damiano Varagnolo, Angelo Cenedese, Gianluigi Pillonetto, Luca Schenato Dipartimento di Ingegneria dell'Informazione – Università di Padova

Newton-Raphson consensus for distributed convex optimization

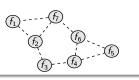
Distributed optimization and its importance

Problem formulation

 $f(x) = \sum_{i=1}^{N} f_i(x)$ $\mathcal{X}, f_i(x)$ are convex

Multi-agents scenario

Networked system where neighbors cooperate to find the optimum



Illustrative example: quadratic local cost functions Derivation of the algorithm – step 1 on 3

Simplified scalar scenario

$$f_i(x) = \frac{1}{2}a_i(x - b_i)^2 + c_i$$

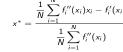
Corresponding solution

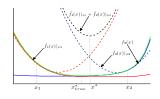
$$x^* = \frac{\sum_{i=1}^{N} a_i b_i}{\sum_{i=1}^{N} a_i} = \frac{\frac{1}{N} \sum_{i=1}^{N} a_i b_i}{\frac{1}{N} \sum_{i=1}^{N} a_i}$$

i.e. parallel of 2 average consensi!

 $\bullet \ a_ib_i=f_i''(x_i)x_i-f_i'(x_i)$

• $b_i = f_i''(x_i)$





Initial proposal

Derivation of the algorithm - step 3 on 3

- run 2 average consensi (P doubly stochastic):
 - $y_i(0) := f_i''(x_i)x_i f_i'(x_i)$ $y_i(k+1) = Py_i(k)$ • $z_i(0) := f_i''(x_i)$

That's all?

No, must provide 2 little modifications:

- track the changing $x_i(k)$
- make local estimation step $x_i = \frac{y_i}{z_i}$ less aggressive

The complete algorithm

Definitions

- $g_i(x_i(k)) = f_i''(x_i(k))x_i(k) f_i'(x_i(k))$
- $\bullet \ h_i(x_i(k)) = f_i''(x_i(k))$

x(k) = y(k) = z(k) = g(x(-1)) = h(x(-1)) = 0

Main procedure

$$\begin{cases} \mathbf{y}(k+1) = P^{M}(\mathbf{y}(k) + \mathbf{g}(\mathbf{x}(k)) - \mathbf{g}(\mathbf{x}(k-1))) \\ \mathbf{z}(k+1) = P^{M}(\mathbf{z}(k) + \mathbf{h}(\mathbf{x}(k)) - \mathbf{h}(\mathbf{x}(k-1))) \\ \mathbf{x}(k+1) = (1-\varepsilon)\mathbf{x}(k) + \varepsilon \frac{\mathbf{y}(k+1)}{\mathbf{z}(k+1)} \end{cases}$$

Convergence properties

Assume that $f_i \in C^2$, f_i strictly convex, $x^* \neq \pm \infty$, and zero initial $\color{red} \textit{condition}.$ There is a positive $\bar{\varepsilon}$ s.t. if $\varepsilon < \bar{\varepsilon}$ then

$$\lim_{k \to +\infty} \mathbf{x}(k) = x^* \mathbb{1}$$
, exponentially

Sketch of the proof

- stransform the algorithm in a continuous-time system
- recognize the existence of a two-time scales dynamical system
- analyze separatedly fast and slow dynamics (standard singular perturbation model analysis approach)

1) transformation in a continuous-time system

$$\left\{ \begin{array}{l} \mathbf{y}(k+1) = P^M(\mathbf{y}(k) + \mathbf{g}(\mathbf{x}(k)) - \mathbf{g}(\mathbf{x}(k-1))) \\ \mathbf{z}(k+1) = P^M(\mathbf{z}(k) + \mathbf{h}(\mathbf{x}(k)) - \mathbf{h}(\mathbf{x}(k-1))) \\ \mathbf{x}(k+1) = (1 - \varepsilon)\mathbf{x}(k) + \varepsilon \frac{\mathbf{y}(k+1)}{\mathbf{z}(k+1)} \end{array} \right.$$

$$\downarrow P = I - K, M = 1$$

$$\begin{cases} \varepsilon \dot{\mathbf{v}}(t) = -\mathbf{v}(t) + \mathbf{g}(\mathbf{x}(t)) \\ \varepsilon \dot{\mathbf{w}}(t) = -\mathbf{w}(t) + \mathbf{h}(\mathbf{x}(t)) \end{cases}$$

$$\varepsilon \mathbf{w}(t) = -\mathbf{w}(t) + \mathbf{n}(\mathbf{x}(t))$$

$$\varepsilon \dot{\mathbf{y}}(t) = -K\mathbf{y}(t) + (I - K)[\mathbf{g}(\mathbf{x}(t)) - \mathbf{v}(t)]$$

$$\begin{aligned} & \underbrace{c \, \forall (t') - \mathbf{v}(t') + \mathbf{h}(\mathbf{x}(t'))}_{\mathbf{c} \, \dot{\mathbf{w}}(t) = -\mathbf{w}(t) + \mathbf{h}(\mathbf{x}(t))} \\ & \underbrace{c \, \dot{\mathbf{y}}(t) = -\mathbf{K} \mathbf{y}(t) + (I - K) \left[\mathbf{g}(\mathbf{x}(t)) - \mathbf{v}(t) \right]}_{\mathbf{c} \, \dot{\mathbf{z}}(t) = -K \mathbf{z}(t) + (I - K) \left[\mathbf{h}(\mathbf{x}(t)) - \mathbf{w}(t) \right]} \end{aligned}$$

 $\dot{\mathbf{x}}(t) = -\mathbf{x}(t) + \frac{\mathbf{y}(t)}{\mathbf{z}(t)}$

2) two-time scales dynamical system

$$\varepsilon \dot{\mathbf{v}}(t) = -\mathbf{v}(t) + \mathbf{g}(\mathbf{x}(t))
\varepsilon \dot{\mathbf{w}}(t) = -\mathbf{w}(t) + \mathbf{h}(\mathbf{x}(t))
\varepsilon \dot{\mathbf{v}}(t) = -K\mathbf{v}(t) + (I - K) [\mathbf{g}(t)]$$

$$\begin{split} \varepsilon\dot{\mathbf{w}}(t) &= -\mathbf{w}(t) + \mathbf{h}\left(\mathbf{x}(t)\right) \\ \varepsilon\dot{\mathbf{y}}(t) &= -K\mathbf{y}(t) + (I - K)\left[\mathbf{g}\left(\mathbf{x}(t)\right) - \mathbf{v}(t)\right] \\ \varepsilon\dot{\mathbf{z}}(t) &= -K\mathbf{z}(t) + (I - K)\left[\mathbf{h}\left(\mathbf{x}(t)\right) - \mathbf{w}(t)\right] \end{split}$$

 $\dot{\mathbf{x}}(t) = -\mathbf{x}(t) + \frac{\mathbf{y}(t)}{\mathbf{z}(t)}$

If arepsilon is sufficiently small .

- first subsystem is much faster than second one
- first subsystem is globally exponentially stable

3) Fast Dynamics $(\epsilon \rightarrow 0)$

 $\mathbb{1}^{T}\dot{\mathbf{y}}(t) = \mathbb{1}^{T}\dot{\mathbf{v}}(t) \Longrightarrow y_{\mathsf{ave}}(t) = v_{\mathsf{ave}}(t) + y_{\mathsf{ave}}(0) - v_{\mathsf{ave}}(0), \quad (y_{\mathsf{ave}} = \frac{1}{N}\mathbb{1}^{T}\mathbf{y})$ $\mathbb{1}^{T}\dot{\mathbf{z}}(t) = \mathbb{1}^{T}\dot{\mathbf{w}}(t) \Longrightarrow \mathbf{z}_{\mathsf{ave}}(t) = \mathbf{z}_{\mathsf{ave}}(t) + w_{\mathsf{ave}}(0) - w_{\mathsf{ave}}(0), \quad \mathsf{true} \ \forall \epsilon$

$$\begin{cases} \mathbf{v}(t) \to \mathbf{g}(\mathbf{x}(t)) & \text{fast dynamics} \\ \mathbf{w}(t) \to \mathbf{h}(\mathbf{x}(t)) & \text{fast dynamics} \end{cases}$$

 $\mathbf{w}(t) \to \mathbf{h}(\mathbf{x}(t))$ $\dot{\mathbf{y}}(t) \to \mathbf{1}_{\{\lambda(t)\}} \\
\dot{\mathbf{y}}(t) \to \left(\frac{1}{N}\mathbf{1}^{\mathsf{T}}\mathbf{g}\left(\mathbf{x}(t)\right)\right)\mathbf{1} \quad \text{if } y_{ave}(0) = v_{ave}(0) \\
\dot{\mathbf{z}}(t) \to \left(\frac{1}{N}\mathbf{1}^{\mathsf{T}}\mathbf{h}\left(\mathbf{x}(t)\right)\right)\mathbf{1} \quad \text{if } z_{ave}(0) = w_{ave}(0)$ $\dot{\mathbf{x}}(t) = -\mathbf{x}(t) + \frac{1}{N} \frac{\mathbf{1}^T \mathbf{g}(\mathbf{x}(t))}{N} \mathbf{1}^T \mathbf{h}(\mathbf{x}(t))}{\mathbf{1}}, \Longrightarrow \mathbf{x}(t) \to \mathbf{x}_{ave}(t) \mathbf{1} \quad \text{slow dyn.}$

If arepsilon is sufficiently small . .

- first subsystem is much faster than second one
- \bullet first subsystem is globally exponentially stable

3) Slow dynamics

If arepsilon is sufficiently small . .

$$\dot{x}_{\text{ave}} \approx -\frac{f'_{\text{ave}}(x_{\text{ave}})}{f''_{\text{ave}}(x_{\text{ave}})} = -\frac{\sum_{i=1}^{N} f'_{i}(x_{\text{ave}})}{\sum_{i=1}^{N} f''_{i}(x_{\text{ave}})}$$

i.e. a continuous-time Newton-Raphson strategy

Other important properties

- \bullet do not require topological knowledge / agents synchronization
- robust to numerical error and communication noise

Robustness properties

Assume that $f_i \in \mathcal{C}^2$, f_i strictly convex, $x^*
eq \pm \infty$, and

$$\begin{aligned} ||\mathbf{x}(0) - \mathbf{x}^* \mathbb{1}|| &= \rho \\ |\mathbb{1}^T \left(\mathbf{v}(0) - \mathbf{y}(0) \right)| &= \alpha \\ |\mathbb{1}^T \left(\mathbf{v}(0) - \mathbf{y}(0) \right)| &= \beta \end{aligned}$$

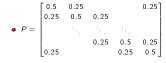
There is a positive scalars $\bar{\varepsilon}, \bar{\rho}, \bar{\alpha}, \bar{\beta}$ and $\phi(\alpha, \beta) : \mathbb{R}^2 \to \mathbb{R} \in \mathcal{C}^0$, s.t. if $arepsilon<ar{arepsilon},
ho<ar{
ho},lpha<ar{lpha},eta<ar{eta}$ then

$$\lim_{k\to +\infty} \mathbf{x}(k) = \phi(\alpha,\beta)\mathbb{1}$$
, exponentially

and $\phi(0,0)=x^*$

Experiments description

$$ullet$$
 circulant graph, ${\it N}=30$



• $f_i = \text{sum of exponentials}$

Comparisons with a Distributed Subgradient

Algorithm from Nedić Ozdaglar, Distributed subgradient methods for multi-agent optimization (2009)

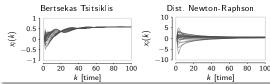
- $x^{(c)}(k) = Px(k)$
- $x_i(k+1) = x_i^{(c)}(k) \frac{\rho}{k} f_i'(x_i^{(c)}(k))$
- (consensus sten) (local gradient descent)
- Numerical comparison Dist Newton-Raphson Nedić Ozdaglar 300 300

Comparisons with an ADMM (first-order)

Algorithm from Bertsekas and J. N. Tsitsiklis, Parallel and

Distributed Computation (1997) $L_{\rho} := \sum_{i} \left[f_{i}(x_{i}) + y_{i}^{(\ell)}(x_{i} - z_{i-1}) + y_{i}^{(c)}(x_{i} - z_{i}) + y_{i}^{(r)}(x_{i} - z_{i+1}) \right]$ $+\frac{\delta}{2}|x_i-z_{i-1}|^2+\frac{\delta}{2}|x_i-z_i|^2+\frac{\delta}{2}|x_i-z_{i+1}|^2$

Numerical comparison



Conclusions and bibliography

Conclusions

- combines Newton-Raphson-like behaviors with average-consensi
- converges to global optimum (convexity and smoothness
- assumptions) • does not require network topology knowledge
- minimal agents synchronization (symmetric gossip like)
- extremely simple to be implemented
- numerically faster than Subgradient methods but slower than Alternating Direction Method of multipliers Bibliography Zanella et al., Newton-Raphson consensus for distributed convex

optimization, CDC 2011 Zanella et al., Multidimensional Newton-Raphson consensus for distributed convex optimization, ACCC 2012 (submitted)