

Asynchronous Newton-Raphson Consensus for Distributed Convex Optimization

F. Zanella, D.Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato Department of Information Engineering, University of Padova

KTH Royal Institute of Technology

Problem description

Aim:

develop a distributed convex optimization **algorithm** suitable for

The main algorithm: NRC

let $g_i(k) := f''_i(x_i(k)) x_i(k) - f'_i(x_i(k))$ $h_i(k) := f''_i(x_i(k))$

$x^* := \arg \min_x f(x)$ with $f(x) = \sum_{i=1}^N f_i(x)$

Muulti-Agents Scenario:

- ► use only local information
- exchange messages only with neighbors
- ► use asynchronous communications

Assumption: $f_i : \mathbb{R} \to \mathbb{R}$ smooth, closed, proper and strictly convex

Derivation of the algorithm

Simplified case – quadratics:

$$f_i(x) = \frac{1}{2}a_i(x - b_i)^2 \implies x^* = \frac{\sum_{i=1}^N a_i b_i}{\sum_{i=1}^N a_i} = \frac{\frac{1}{N}\sum_{i=1}^N a_i b_i}{\frac{1}{N}\sum_{i=1}^N a_i}$$

a well known structure: parallel of two average consensus let also S(k), E(k), P(k) be, e.g.,

: initialize as follows: randomly select the $x_i(0)$'s set $y_i(0) = z_i(0) = g_i(-1) = h_i(-1) = 0$

(main algorithm) 2: for k = 1, 2, ... do 3: $\boldsymbol{y}(k+1) = P(k) \left(\boldsymbol{y}(k) + E(k) \left(\boldsymbol{g}(k) - \boldsymbol{g}(k-1) \right) \right)$ 4: $\boldsymbol{z}(k+1) = P(k) \left(\boldsymbol{z}(k) + E(k) \left(\boldsymbol{h}(k) - \boldsymbol{h}(k-1) \right) \right)$ 5: $\boldsymbol{x}(k+1) = \boldsymbol{x}(k) + \varepsilon S(k) \left(-\boldsymbol{x}(k) + \frac{\boldsymbol{y}(k+1)}{\boldsymbol{z}(k+1)} \right)$ 6: end for

Why the algorithm works (for sufficiently small ε):

Question: how to extend this to the general case? First attempt:

Prototype

let P = average consensus matrix

1: initialize as follows: randomly select the $x_i(0)$'s compute $y_i(0) = f_i''(x_i(0))x_i(0) - f_i'(x_i(0))$ and $z_i(0) = f_i''(x_i(0))$ 2: run the average consensus $y^+ = Py$ $z^+ = Pz$ 3: when converged, compute $\boldsymbol{x} = -$

Proposition: the \boldsymbol{x} computed by the previous algorithm corresponds to the exact Newton direction \Rightarrow the previous procedure indicates where to move \Rightarrow updating \boldsymbol{x} through $\frac{\boldsymbol{y}}{\boldsymbol{z}}$ gets us closer to x^* :

• $y_i(k) \approx \frac{1}{N} \sum_{i=1}^N \left(f_i''(x_i) x_i - f_i'(x_i) \right)$ • $z_i(k) \approx \frac{1}{N} \sum_{i=1}^N f_i''(x_i)$

Convergence properties

• **Theorem:** (uniform activation) if on the long run all the agents are activated the same number of times then NRC is **globally convergent**

• Theorem: (persistent activation) if every agent is activated at least once in every suff. large time windows then NRC is *locally convergent*

- \rightarrow directions for generalizations: 1. track the changing $x_i(k)$
- 2. make the local estimation step $\boldsymbol{x}(k+1) = \frac{\boldsymbol{y}(k+1)}{\boldsymbol{z}(k+1)}$ milder 3. make communications asynchronous
- x^*1 10 $(\|oldsymbol{x}_m(k)$ 10^{-5} ave 7,500 2,5005,000 10,000 number of communication steps

References

- ► Zanella, Varagnolo, Cenedese, Pillonetto, Schenato, Newton-Raphson Consensus for Distributed Convex Optimization, IEEE TAC 2012
- ► Zanella, Varagnolo, Cenedese, Pillonetto, Schenato, Asynchronous N.-R. Consensus for Distributed Convex Optimization, NecSys 2012