
Asynchronous Newton-Raphson Consensus for
Distributed Convex Optimization

F. Zanella, D.Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato
Department of Information Engineering, University of Padova KTH Royal Institute of Technology

Problem description
Aim:

I develop a distributed convex optimization
algorithm suitable for

x∗ := arg min
x
f (x) with f (x) =

N∑
i=1
fi(x)

Muulti-Agents Scenario:
I use only local information
I exchange messages only with neighbors
I use asynchronous communications

Assumption: fi : R 7→ R smooth, closed, proper and strictly convex

Derivation of the algorithm
Simplified case – quadratics:

fi(x) = 1
2
ai
(
x− bi

)2 ⇒ x∗ =

N∑
i=1
aibi
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ai

=

1
N
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1
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ai

a well known structure:
parallel of two average consensus

Question: how to extend this to the general case? First attempt:

Prototype
let P = average consensus matrix

1: initialize as follows:
randomly select the xi(0)’s
compute yi(0) = f ′′i

(
xi(0)

)
xi(0)− f ′i

(
xi(0)

)
and zi(0) = f ′′i

(
xi(0)

)
2: run the average consensus

y+ = Py
z+ = Pz

3: when converged, compute x = y

z

Proposition: the x computed by the previous algorithm corresponds to the
exact Newton direction ⇒ the previous procedure indicates where to move
⇒ updating x through y

z
gets us closer to x∗:

f1(x)

f (x)
q(x)

f2(x)

q2(x)q1(x)

→ directions for generalizations:
1. track the changing xi(k)

2. make the local estimation step x(k + 1) = y(k + 1)
z(k + 1)

milder

3. make communications asynchronous

The main algorithm: NRC

let
gi(k) := f ′′i

(
xi(k)

)
xi(k)− f ′i

(
xi(k)

)
hi(k) := f ′′i

(
xi(k)

)
let also S(k), E(k), P (k) be, e.g.,

S(k) =
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
1: initialize as follows:

randomly select the xi(0)’s
set yi(0) = zi(0) = gi(−1) = hi(−1) = 0
(main algorithm)

2: for k = 1, 2, . . . do
3: y(k + 1) = P (k)

(
y(k) + E(k)

(
g(k)− g(k − 1)

))
4: z(k + 1) = P (k)

(
z(k) + E(k)

(
h(k)− h(k − 1)

))
5: x(k + 1) = x(k) + εS(k)

−x(k) + y(k + 1)
z(k + 1)


6: end for

Why the algorithm works (for sufficiently small ε):

I yi(k) ≈ 1
N

N∑
i=1

(
f ′′i (xi)xi − f ′i(xi)

)

I zi(k) ≈ 1
N

N∑
i=1
f ′′i (xi)

I ẋave ≈ −
f ′(xave)
f ′′(xave)

Convergence properties
• Theorem: (uniform activation) if on the long run all the agents are
activated the same number of times then NRC is globally convergent
• Theorem: (persistent activation) if every agent is activated at least
once in every suff. large time windows then NRC is locally convergent

Performance
communication graph examples of local costs
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