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Problem description The main algorithm: NRC
Aim: p .
» develop a distributed convex optimization lot
algorithm suitable for O gi(k) == f (x (k) ) (k) — f! (:1: ))
N O ( ( ()
ot =agmin f()  with () =Y filz) O o P k)
=1 ® O O let also S(k), E(k), P(k) be, e.g.,
Muulti-Agents Scenario: O 0 ] 0 ) 1
» use only local information O O 1 1 1 —« Q
» exchange messages only with neighbors S(k) = { ) E(k) = { ) P(k) = : |
» use asynchronous communications 0 | o 1 — o
] 0] 0 1
Assumption: f;: R +— R smooth, closed, proper and strictly convex 1. initialize as follows:
randomly select the x;(0)’s
set 4i(0) = 2,(0) = gi(—1) = hy(—1) =0
Derivation of the algorithm (main algorithm)
Simplified case — quadratics: 2 fork=1,2,...do
v L v ylk+1) = P(k)(y(k) + B(k) (g (k) — g(k — 1))
CLZ' — a;0;
1 2 i} Z:z:l - N 2 4: z(k+1) = P(k) (z(k) + E(k) (h(k) — h(k — 1)))
filz) = —CLZ'(ZE — bi) = T = = N
: > - Z s xlk+1) =xk)+eSk) | —x(k) y(k+1)
i=1 N i3 | z(k+ 1)
6 end for )
a well known structure:
parallel ot two average consensus Why the algorithm works (for sufficiently small ¢):
k) 3 (e~ f)
Question: how to extend this to the general case? First attempt: : N o Ve ] (e
4 A 1 N ! T e f”(mave)
Prototype > zi(k) & N 2:1 fi (i)
let P = average consensus matrix
1. initialize as follows:
randomly select the x;(0)’s Convergence properties
compute y;(0) = f Z-”(xz-(O))xi(O) —f z‘l(i’?i(o)) and z;(0) = f z'”(xi(o)) e Theorem: (uniform activation) if on the long run all the agents are
2. Tun the average consensus activated the same number of times then NRC is globally convergent
y" = Py e Theorem: (persistent activation) if every agent is activated at least
z" = Pz once in every suff. large time windows then NRC is locally convergent
3: when converged, compute £ = =
z
. i Performance
Proposition: the & computed by the previous algorithm corresponds to the communication graph examples of local costs
exact Newton direction = the previous procedure indicates where to mowve o0
= updating x through J gets us closer to z*: ‘gﬂ, o
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— directions for generalizations:
1. track the Changing $Z<k> References
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