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Calibrating Distance Sensors for Terrestrial
Applications Without Groundtruth Information

Anas Alhashimi, Student Member, IEEE, Damiano Varagnolo, and Thomas Gustafsson

Abstract—This paper describes a new calibration procedure
for distance sensors that does not require independent sources
of groundtruth information, i.e., that is not based on comparing
the measurements from the uncalibrated sensor against measure-
ments from a precise device assumed as the groundtruth. Alter-
natively, the procedure assumes that the uncalibrated distance
sensor moves in space on a straight line in an environment with
fixed targets, so that the intrinsic parameters of the statistical
model of the sensor readings are calibrated without requiring
tests in controlled environments, but rather in environments
where the sensor follows linear movement and objects do not
move.

The proposed calibration procedure exploits an approximated
EM scheme on top of two ingredients: an heteroscedastic statisti-
cal model describing the measurement process, and a simplified
dynamical model describing the linear sensor movement. The
procedure is designed to be capable of not just estimating the
parameters of one generic distance sensor, but rather integrating
the most common sensors in robotic applications, such as Lidars,
odometers and sonar rangers and learn the intrinsic parameters
of all these sensors simultaneously.

Tests in a controlled environment led to a reduction of the MSE
of the measurements returned by a commercial triangulation
Lidar by a factor between 3 and 6, comparable to the efficiency of
other state-of-the art groundtruth-based calibration procedures.
Adding odometric and ultrasonic information further improved
the performance index of the overall distance estimation strategy
by a factor of up to 1.2. Tests also show high robustness against
violating the linear movements assumption.

Index Terms—Expectation Maximization, distance sensors, in-
trinsic sensors calibration, heteroscedastic models, simultaneous
sensors calibration, triangulation lidars, ultrasonic sensors, odom-
etry

I. INTRODUCTION

THERE are different technologies for measuring distances.
Therefore, the distance measurement error distribution

and variance varies with different distance sensors. Figure 1
shows three realizations of the distance measurement errors
committed by three different and off-the-shelf commercial
sensors typically used in robotics applications.

Calibrating the sensors above means finding how to process
the raw information so to diminish its instrumental bias and
noisiness levels. The standard calibration procedure is then to
compare the measurements against some “groundtruth” and
then learn through this comparison how the original readings
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Fig. 1. Realizations of the errors committed by a triangulation Lidar, an
odometer and a sonar in measuring the distance between a robot hosting
these sensors and a frontal wooden obstacle, for the case where the robot was
moving on a flat floor in an indoor artificially illuminated room (more details
on the experimental setup are given in Section VI).

are affected by bias and noise. Obtaining this groundtruth in
its turn typically requires first setting up the data collection
environment, then collecting the data, and eventually execute
some opportunely implemented statistical learning algorithms.
Since the characteristics of these sensors may change over time,
it is also advisable to perform this procedure periodically.

The problem with this “standard way” is that setting
up a controlled environment may be expensive and time
consuming, specially if the sensors are installed in some end-
user commercial applications and thus spread around the globe.
In this paper we focus on the need for alternative calibration
strategies.

Consider then that calibration may refer to two different
types of information: learning either the intrinsic parameters
of the sensor (i.e., parameters that explain the statistics of the
sensors readings), or the extrinsic parameters (i.e., parameters
that result from how the sensor interacts with the environment
like, for example, the relative positioning among different
objects).

In this paper we specifically consider the problem of
estimating the intrinsic parameters of distance sensors that
are to be used in terrestrial robotics applications, and thus in
situations where the ranges of the measurements are in the order
of meters, their precision in the order of millimeters, and their
typical usage is on wheeled robots. More precisely we consider
how to calibrate distance sensors using, instead of groundtruth
information as above, alternative structural assumptions on the
statistical model of the sensor readings and on the movement
of the sensor in space.

In practice thus we consider the practical need of calibrating
a distance sensor mounted on an autonomous terrestrial robot
while assuming that: i) we do not have access to groundtruth
information; ii) we have access to the inputs given from
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the robot to the wheels’ motors; iii) the robot moves on a
straight line; iv) the surrounding environment does not change.
(Optionally, the robot may also be endowed with other non-
calibrated distance-measuring sensors such as odometers and
ultrasound rangers.) In practice, we consider the archetypal
situation of an autonomous vacuum cleaning robot that makes
straight moves in an unknown environment.

We also assume that we know the structure of the statistical
models of the various sensors, so that calibration problem can
be cast as a statistical inference problem (i.e., transform a
dataset of distances measured by the sensors plus commands
given to the robot’s wheels into a (meaningful) estimate of the
sensors’ intrinsic parameters, under the assumption that the
robot moves along a straight line).

Literature review

The most common types of distance sensors used in the
terrestrial robotic applications and with the measurement ranges
indicated above are Lidars, sonars [1], and odometers 1 [3].

Specific types of Lidars have specific statistical models,
and leveraging on these differences different authors proposed
different calibration algorithms. E.g., the characterization of the
intrinsic parameters of Time of Flight (ToF) Lidars has been
analyzed in [4], [5], [6], [7], [8], [9], [10], [11], [12]. More
specifically, a characterization study of the Sick LMS200 Lidar
with measurement drift over time, and targeted the influence
of the surface properties as well as the incidence angle on the
measurement process presented in [4], the paper also proposed
a probabilistic range measurement model constructed starting
from the experimental results. A detailed characterization of the
Hokuyo URG-04LX 2D Lidar, a device with issues like time
drift effects and dependencies on distance and target properties
was presented in [5]. Authors here concluded that the accuracy
of the sensor is strongly depending on the target properties and
that it is consequently difficult to establish a calibration model.
However, recently a computationally inexpensive algorithm
for range correction in industrial scenarios that is based
on the material surface was proposed and developed in [6].
A comparison between the Sick LMS200 and the Hokuyo
URG-04LX for measurement drift over time, the effect of
material and color on measurement accuracy was discussed in
[7]. The geometry of the emitted beam and the mixed pixel
effect for LMS200 Lidar were characterized in [8]. A model
proposed by [9] for estimating edge loss in Lidar data by
considering the impacts of various factors such as scanning
distance, density of data and incidence angle on the edge loss.
The evaluation results showed that using this model reduces the
measurement error. The performance of CSEM SwissRanger2
and CanestaVision DP205 3D Lidars characterized in [10] ,
examining the effects of target range, reflectance and angle of
incidence and mixed pixel effects. We analyzed in our previous
work [11] how the temperature stabilization transient constitutes
a source of measurement drift over time for the LMS200 Lidar.
The paper proposed thus a statistical model that accounts for the

1One may stretch this list and add radars [2] to it, even if they tend to be
used for deeper ranges than the ones considered here.

bias induced by temperature changes and the laser diode mode-
hopping effects, leading to an alternative calibration procedure
that is based on Expectation Maximization (EM) strategies.
Recently, a probabilistic modeling of Hokuyo UTM-30LX
Lidar was presented in [12].

The calibration of the intrinsic parameters of triangulation
Lidars has instead been studied in [13], [14], [15], [16]. More
specifically, the technology introduced in [13] and performed
an early-assessment of the potential for this technology; the
nonlinearities affecting the triangulation Lidars produced by
Neato discussed by [14]; the effects of the color of the target
on the raw data returned by triangulation Lidars analyzed in
[15]; and a groundtruth-based calibration procedure based on
a statistical model that generalizes the one in [14] proposed
in [16] .

An alternative intrinsic parameters calibration strategy specif-
ically dedicated to multi-beam Lidars is to calibrate the various
beams against each others see literature review in [17], [18]
for more details.

As for the calibration of sonars, the existing literature
presents ultrasonic range-finder models in [19] and opportune
calibration algorithms in [20]. More specifically, a probabilistic
measurement model for the sonar suitable for robot localization
proposed by [19]; and a calibration model of an ultrasonic
range-finder from POLAROID ultrasonic ranging system built
in [20], it is based on experimental results and includes
probability directional diagram of the sensor and probability
estimation of the sensor measurements.

Eventually, a good literature review on odometer calibration
is presented in [21]. We notice that this review presents, among
others, an on-line identification algorithm for the odometer
parameters for a differential drive mobile robot. Complementing
the last cited work there is then [22], that describes how to
treat the case of linearized odometer models and considers how
the errors from this linearization process propagates to other
computations.

Statement of contributions

Differently from all of the manuscripts cited above, we
propose a groundtruth-less calibration strategy for inferring the
intrinsic parameters of robotics-oriented distance sensors via
an approximated EM algorithm. More precisely, the strategy
uses the following standing assumptions:

1) the distance sensor follows the generic non-linear and
heteroscedastic statistical model summarized in (2);

2) the sensor is mounted on a robot that moves along a line
(even with a time varying speed; the important is that the
movement is along a line);

3) the robot has knowledge about the actuation signals it
gave to its motors (notice that this does not mean that the
robot has knowledge of its actual velocity).

Complementary with the strategy above, we also propose
two ancillary results: the first is a description of how to
integrate in the calibration scheme more than one distance
sensors (e.g., calibrate simultaneously Lidars, odometry and
ultrasonic sensors, so to enjoy of the potential synergies
in the information that these sensors provide). The second
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is a description of how to use the results coming from a
groundtruth-less calibration procedure to perform Kalman
smoothing during normal operations where a first calibration
has been performed and re-calibration is not yet needed. Notice
that we ignore temporal calibration problems, i.e., ignore the
effects of uncertainties in the timings of the measurements
(see [23] for a treatment of this type of problems).

We eventually quantify and compare how these novel
groundtruth-less calibration strategies perform compared to the
groundtruth-based strategies proposed in [16], plus investigate
the gains obtained combining Lidars, odometers and sonars.

Organization of the manuscript

Section II presents the statistical models of the sensors that
we considered here, plus generalizes these models so that
other authors with other sensors may tailor our strategy to
their particular case. Section III models the dynamics of the
robot. Section IV derives our calibration procedure. Section V
presents a Kalman smoothing based strategy useful to exploit
the results from the calibration procedure during the normal
operations of the sensors. Section VI numerically compares the
statistical performances of the various estimators and a Monte
Carlo analysis of the sensitivity of the proposed strategies to
the standing assumption of the sensor moving along a line.
Section VII draws some conclusions and describes our future
research efforts.

II. SENSORS MODELING

Sections II-A, II-B and II-C describe the specific statistical
models of the various sensors used in our EM calibration strat-
egy. Section II-D instead the statistical models of Sections II-A,
II-B and II-C and presents information useful to re-derive the
equations of our EM calibration strategy for other types of
ranging sensors.

A. Triangulation Lidar sensors models

In our previous work [16] we derived and validated, starting
from a combination of physical and statistical considerations,
a model of the measurements produced by triangulation Lidars
that accounts for pinhole lens radial distortions effects and
nonlinearities induced by the geometry of the laser-CCD system.
The model is then

ylk = αl
0 + αl

1dk + αl
2d

2
k︸ ︷︷ ︸

nonlinear bias

+ βl
2d

2
ke

l
k︸ ︷︷ ︸

heteroscedastic noise

where ylk is the measurement at time k, dk is the true distance,
αl
0, α

l
1, α

l
2 are the parameters defining the (nonlinear) sensor

bias, elk ∼ N (0, 1) is independent and identically distributed
(iid), and the term βl

2d
2
k implies that the measurement noise is

heteroscedastic.

B. Odometry sensors model

Several different models describe the statistical properties
of the odometers’ measurements, e.g., [3], [24]. There seems
to be consensus in considering, in the common case where
robots have two independent traction wheels, separate errors

in the translation of each wheel that increase linearly with
the distance traveled and with the number of input commands
given to the robot, i.e., heteroscedastic models.

Unfortunately our experiments suggest to use a homoscedas-
tic noises (see, e.g., Figure 1). For this reason we considered
in our calibration procedure the model

yok = αo
0 + αo

1dk︸ ︷︷ ︸
linear bias

+ βo
0e

o
k︸︷︷︸

homoscedastic noise

(1)

with eok ∼ N (0, 1). Notice that this choice has been driven
by our specific hardware, and thus has no claim of generality;
nonetheless we derived our procedure using general formulas,
so that if readers need to change (1) in favor of more
complicated dependencies on eok they can easily do so.

C. Ultrasonic ranging sensors model

Ultrasonic sensors are affected by an affine bias accounting
for installation offsets and scaling of the actual distance induced
by the dependency of the sound propagation speed in air
on the air temperature (safely assumable constant during
a calibration procedure). The measurement noise is instead
typically generated from robot shaking and floor surface
variations effects that generate mechanical vibration of the
robot body [25]. Thus the statistical model that we consider is

yuk = αu
0 + αu

1dk︸ ︷︷ ︸
affine bias

+ βu
0 e

u
k︸ ︷︷ ︸

homoscedastic noise

where the notation and assumptions on euk are similar to the
ones in II-A.

D. Generic sensor model

Generalizing the results obtained in Sections II-A, II-B
and II-C, we may consider a generic heteroscedastic sensor
model

y
(s)
k =

N(s)
α −1∑
i=0

α
(s)
i dik︸ ︷︷ ︸

bias

+

N
(s)
β −1∑
i=0

β
(s)
i dike

(s)
k︸ ︷︷ ︸

noise

(2)

where dk is the noiseless distance, (s) is the sensor label,
e
(s)
k ∼ N (0, 1) i.i.d., and the coefficients α

(s)
i , β(s)

i , N (s)
α and

N
(s)
β define the type of bias and noise affecting that specific

sensor type. This model thus captures the statistical behavior
of the most typical distance sensor mentioned in our literature
review.

III. MODEL OF THE DYNAMICS OF THE ROBOT

Assume that a robot is endowed with S different sensors,
and that each of these sensors satisfy a measurement model
like the one proposed in (2). Calibrating these sensors then
means to estimate the coefficients of the various polynomials
of the type (2). From statistical identifiability perspectives
there is thus the need for models of the dynamics of the robot
that depend on all the parameters involved in the polynomials
above. In other words, it is possible to do calibration of all
the parameters α

(s)
i and β

(s)
i only if they are all present in the

model expressing the dynamics of the overall system.
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Let then the transition model for the actual distance dk be
linear Gaussian, i.e.,

dk+1 = dk + uk + νk (3)

with uk the scalar input representing the motion commands
given to the robot, νk ∼ N

(
0, σ2

d

)
with σ2

d for simplicity
assumed known. Define thus Nmax as the maximum order of
the polynomials appearing in (2), i.e.,

Nmax := max
s

{
N (s)

α , N
(s)
β

}
s∈{1,...,S}

,

and let the (redundant) state vector describing the robot’s
motion as xk := [1, dk, · · · , dNmax−1

k ]T . The associated (non-
minimal) dynamical model is thus[

xk+1

yk

]
=

[
Ak Bk

C 0

] [
xk

1

]
+

[
wk

vk(xk)

]
(4)

with yk := [y
(1)
k , . . . , y

(S)
k ]T the measurements vector, 0 a

vector of zeros with opportune dimensions, and with (padding
when necessary the various coefficients with zeros)

Ak :=


1 0 0 0 · · ·
0 1 0 0 · · ·
0 2uk 1 0 · · ·
0 3u2

k 3uk 1 · · ·
...

...
. . . . . . . . .

 Bk :=


0
uk

...
uNmax−1
k



C :=


α
(1)
0 · · · α

(1)
Nmax−1

...
α
(S)
0 · · · α

(S)
Nmax−1

 (5)

with

• uk (assumed known) conveniently absorbed into the
various model matrices;

• the i-th row of Ak exhibiting the coefficients of the
binomial formula (dk + uk)

i−1 (but the first element, that
is always 0);

• the measurement noise vk satisfying, given model (2),
vk ∼ N (0, R(xk)) with

R(xk) := diag
(
r(1) (xk) , . . . , r

(S) (xk)
)

and

r(s) (xk) :=
([

β
(s)
0 · · · β(s)

Nmax−1

]
xk

)2
.

We notice that the definition of xk and the assumption
νk ∼ N

(
0, σ2

d

)
in (3) implies that the process noise wk

in (4) should not be Gaussian. This, unfortunately, hinders
numerical tractability of the estimation processes based on (4).
To overcome this problem we simplify wk and assume it to
be Gaussian, wk ∼ N (0, Q) with Q known and diagonal
with small entries. Moreover, again for the same sake of
simplification, we assume the initial state to be Gaussian too,
i.e., x1 ∼ N (µd,Σd) with µd known and Σd = 0.

We also notice that we may have alternatively defined xk as
[dk, · · · , dNmax−1

k ]T , but this would have led us into the need
for estimating the matrices Bk (and thus system identifiability

problems).

IV. AN EM-BASED GROUNDTRUTH-LESS CALIBRATION
PROCEDURE

Let u := [u1, . . . , uN ]
T , and

yk :=


y
(1)
k
...

y
(S)
k

 , k = 1, . . . , N, y := [y1, . . . , yN ]

xk :=


1
dk
...

dNmax−1
k

 , k = 1, . . . , N+1, x := [x1, . . . , xN+1] .

Assuming u to be known, model (4) is fully described by
the set of parameters

θ :=

{ {
α
(s)
0 , . . . , α

(s)
Nmax−1

}
s∈{1,...,S}

,{
β
(s)
0 , . . . , β

(s)
Nmax−1

}
s∈{1,...,S}

}
.

(6)

Our first aim is thus to estimate θ from a dataset of
measurements y, u collected in a non-controlled environment.
In other words, we want to find a statistically meaningful map
of the kind

{y,u} 7→ θ̂ (7)

where the unique additional assumption that we pose is that the
robot follows a straight line and the surrounding environment
does not change in the while.

We assume θ to be a deterministic unknown quantity. Given
this assumption we strive for finding the Maximum Likelihood
(ML) estimator for θ given {y,u} in (7). Since the likelihood
p (y,x ; θ) depends on the unknown x, the natural strategy
would then be to maximize the marginal likelihood of the
outputs y with respect to θ, i.e., solve

θ̂ML := argmax
θ∈Θ

p (y ; θ) (8)

where Θ is the (assumed closed) set of admissible candidate pa-
rameters vectors, and where p (y ; θ) is obtained integrating out
from p (y,x ; θ) the latent r.v. x. Since solving numerically (8)
in our specific case is not trivial (given that the marginalization
task is not trivial) we attempt to solve (8) numerically by
means of an opportune EM scheme. Before presenting the
specific equations of our strategy in Sections IV-B and IV-C,
and for completeness of the treatment, we briefly discuss the
basic machineries behind EM algorithms in the following
Section IV-A. For more details on the EM algorithm see,
e.g., [26].

A. The Expectation Maximization (EM) algorithm in the
general case

The strategy is founded on the basic relationship

p (y ; θ) =
p (y,x ; θ)

p (x |y ; θ)
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and computes θ̂ iterating the two steps (with t being the EM
iteration index):

E step: given θ̂(t) i.e., the estimate of the parameters at
iteration t, compute

`
(
θ, θ̂(t)

)
= E

p
(
x|y ; θ̂(t)

) [log p (y,x ; θ)] ;

M step: compute

θ̂(t+1) = argmax
θ

`
(
θ, θ̂(t)

)
.

The EM algorithm is ensured to make θ̂(t) asymptotically
converge, by iterating the two steps above, to a potentially
local maximum of p (y ; θ). Among the various plausible
stopping criteria, the most common ones are to stop either
when

∥∥∥θ̂(t+1) − θ̂(t)
∥∥∥ is below a given threshold, or after a

pre-fixed number of iterations. The following two subsections
describe in detail how to implement the EM steps in our specific
case, while we report the equations of generic EM algorithms
in the appendix for completeness.

B. The Expectation step in our specific case

Computing `
(
θ, θ̂(t)

)
requires to find log p (y,x ; θ);

consider thus that model (4) implies[
xk+1

yk

]
∼ N

([
Ak Bk

C 0

] [
xk

1

]
,

[
Q 0
0T R (xk)

])
. (9)

with 0 a matrix of zeros with opportune dimensions, x1 ∼
N (µd,Σd) and with µd and Σd known. Defining

Σk :=

[
Q 0
0T R (xk)

]
(10)

and using both the Bayes rule and the Markovianity of (4) we
get

p (y,x ; θ) = p (x1 ; θ)

N∏
k=1

p (yk |xk ; θ) p (xk+1 |xk ; θ)

that leads immediately to

log p (y,x ; θ) = log p (x1 ; θ)+
N∑

k=1

log p (yk |xk ; θ) +

N∑
k=1

log p (xk+1 |xk ; θ) .

Given (9) the joint log likelihood thus can be written as

log p (y,x ; θ) ∝ C + log detΣd
−1 − ‖x1 − µd‖2Σd

+
N∑

k=1

(
log detΣ−1

k −
∥∥∥∥[xk+1

yk

]
−
[
Ak Bk

C 0

] [
xk

1

]∥∥∥∥2
Σk

)
where ‖?‖2� := ?T �−1 ? and C is a constant independent
of the variables y, x, and θ. Applying then the conditional
expectation E

p
(
x|y ; θ̂(t)

) [·] on both sides, expanding the

norms opportunely and ignoring multiplicative factors yields
to (see also [27])

`
(
θ, θ̂(t)

)
= C +

N∑
k=0

(
log detΣk

−1 − tr (Ek)
)

(11)

with, for k = 0, Σ0 = Σd and

E0 := E
p
(
x|y ; θ̂(t)

) [Σ−1
d (x1 − µd) (x1 − µd)

T
]

and, for k = 1, . . . , N ,

Ek := E
p
(
x|y ; θ̂(t)

) [Σ−1
k

([
xk+1

yk

]
−
[
Ak Bk

C 0

] [
xk

1

])
([

xk+1

yk

]
−
[
Ak Bk

C 0

] [
xk

1

])T
]
.

(12)
Exploiting the fact that Σk in (10) is block diagonal, expand-
ing we find that calculating tr (Ek) requires computing the
following quantities

E
p
(
x|y ; θ̂(t)

) [xk+1x
T
k

]
E
p
(
x|y ; θ̂(t)

) [xkx
T
k

]
E
p
(
x|y ; θ̂(t)

) [R (xk)
−1

Cxkx
T
kC

T
]

E
p
(
x|y ; θ̂(t)

) [R (xk)
−1

ykx
T
kC

T
]
.

(13)

Given that R (xk) in (13) depends on xk, the quantities above
cannot be computed in closed form, but rather requires numeri-
cal integration procedures. Since we aim at algorithms that can
be implemented on cheap hardware, we seek for approximating
`
(
θ, θ̂(t)

)
in (11) with an alternative approximated version˜̀(θ, θ̂(t)) with closed-form computability qualities.

To this point we notice that if the covariances R (·) were
independent of xk then we would be in the very same situation
of [27], and thus we would be able to compute (13) by means
of a dedicated Kalman smoother. We thus follow this approach,
and approximate R (·) by considering xk being equal to its
past estimated value.

More precisely, assume to be at iteration t of the EM
algorithm; this means that at time t − 1 we have com-
puted both an estimate of the parameters θ̂(t) and an es-
timate of the state x̂

(t−1)
k (with initial condition x̂

(0)
k =[

1,mean(yk), . . . ,mean(yk)Nmax−1
]
). Define thus

R
(t)
k := diag

(
r(1)

(t)
(
x̂
(t−1)
k

)
, . . . , r(S)(t)

(
x̂
(t−1)
k

))
r(s)

(t)
(
x̂
(t−1)
k

)
:=

([
β
(s)
0

(t)
· · · β(s)

Nmax−1

(t)
]
x̂
(t−1)
k

)2

and β
(s)
0

(t)
, . . . , β

(s)
Nmax−1

(t)
the set of parameters modeling

sensor s estimated at time t by the EM algorithm. R
(t)
k is

thus a statistically meaningful approximation of the actual
noise covariance R (xk), and with this we can approximate
the quantities in (13) (and thus `

(
θ, θ̂(t)

)
) by means of the

following Algorithm 1. For convenience we indicate with C(t)

the estimate of matrix C in (5) and the process noise covariance
defined by the current estimate of the parameters θ̂(t).
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Algorithm 1 Kalman smoother for the Expectation step

1: Requires: C(t), R(t)
1 , . . . , R

(t)
N

2: set (initial conditions for the forward pass)

P1|1 = Σ1 x̂1|1 = µ1

3: compute, for k = 1, . . . , N (forward pass)

Pk|k−1 = AkPk−1|k−1A
T
k +Q

Kk = Pk|k−1C
(t)T

(
C(t)Pk|k−1C

(t)T +R
(t)
k

)−1

Pk|k = Pk|k−1 −KkC
(t)Pk|k−1

x̂k|k−1 = Akx̂k−1|k−1 +Bk1

x̂k|k = x̂k|k−1 +Kk

(
yk − C(t)x̂k|k−1

)
4: set (initial conditions for the backwards pass)

MN |N =
(
I −KNC(t)

)
AkPN−1|N−1

5: compute, for k = N, . . . , 1 (backwards pass)

Jk = Pk|kA
TP−1

k+1|k

Pk|N = Pk|k + Jk
(
Pk+1|N − Pk+1|k

)
JT
k

x̂k|N = x̂k|k + Jk
(
x̂k+1|N −Akx̂k|k −Bk1

)
Mk|N = Pk|kJ

T
k−1 + Jk

(
Mk+1|N −AkPk|k

)
JT
k−1

(the last equation being performed only when k 6= N )

Exploiting the results in [28], thus, we can claim that

E
p
(
x|y ; θ̂t

) [xkx
T
k

]
≈ x̂k|N x̂T

k|N + Pk|N

E
p
(
x|y ; θ̂t

) [xk+1x
T
k

]
≈ x̂k+1|N x̂T

k|N +Mk+1|N

E
p
(
x|y ; θ̂t

) [ykxT
k

]
≈ ykx̂

T
k|N .

(14)
Approximating R (xk) with R

(t)
k thus leads to approximate

the expectations (13) with (14), and thus to approximate
`
(
θ, θ̂(t)

)
with an opportune ˜̀(θ, θ̂(t)) obtainable expanding

Ek in (12) into single factors and exploiting the fact that R(t)
k

does not depend on xk. Moreover when Algorithm 1 terminates
we can also set x̂(t) =

[
x̂1|N , . . . , x̂N |N

]
.

We notice that approximating ` with ̂̀ may theoretically
disrupt the convergence properties of our EM strategy (some-
thing that we never experienced, though); proving the stability
of the proposed scheme is nonetheless out of scope here and
currently under analytical investigation.

C. The Maximization step in our specific case

Given the discussion above, we solve the Maximization step
by searching that parameter vector that maximizes ˜̀(θ, θ̂(t)),
i.e., by computing

θ̂(t+1) = argmax
θ∈Θ

˜̀(θ, θ̂(t)) . (15)

by means of closed form equations and considering the
latent variables x to be equal to that x(t) computed in
the Expectation step. Given definition (6), estimating θ
means finding the matrix C (that contains the various{
α
(s)
0 , . . . , α

(s)
Nmax−1

}
s∈{1,...,S}

), and the matrix R
(
x
(t)
k

)
(that

contains the various
{
β
(s)
0 , . . . , β

(s)
Nmax−1

}
s∈{1,...,S}

).

As shown in the next subsections, the actual equations for
solving (15) depend on which combination of sensors one uses.

1) The Maximization step when using just a triangulation
Lidar: Having a triangulation Lidar only, and considering the
likelihood (12), our aim is to estimate C =

[
αl
0, α

l
1, α

l
2

]
and

the variance parameter βl
2, given the current estimate of the

state provided by the previous Expectation step x̂.
Considering the structure of (12), this requires to compute

C(t+1) =

(
N∑

k=1

E
p
(
x|y ; θ̂(t)

) [R(xk)
−1ykx

T
k

])
(

N∑
k=1

E
p
(
x|y ; θ̂(t)

) [R(xk)
−1xkx

T
k

])−1

.

(16)

Unfortunately, since R(xk)
−1 is a function of the states,

solving (16) analytically proves to be very complicated. To
reduce the computational burden associate to this step we repeat
the same approximation we performed before on R (xk), and
consider it equal to R(x̂

(t−1)
k ). Therefore we rewrite (16) by

substituting R(xk) with
(
[0, 0, βl

2]x̂
(t−1)
k

)2
=
(
βl
2x̂

(t−1)
k [3]

)2
where x̂

(t−1)
k [3] is the third element in the vector x̂(t−1)

k . Since
this quantity is not a function of xk anymore, we can safely
take it out of the expectations in (16), apply (14) and thus
approximate the Maximization step with

C(t+1) ≈

(
N∑

k=1

(x̂
(t−1)
k [3])−2ykx̂

T
k|N

)
(

N∑
k=1

(x̂
(t−1)
k [3])−2x̂k|N x̂T

k|N + (x̂
(t−1)
k [3])−2Pk|N

)−1

.

To complete the Maximization step, we apply a similar
procedure for the computation of βl

2 and obtain(
β
l (t+1)
2

)2
=

1

N

N∑
k=1

(x̂
(t−1)
k [3])−2yky

T
k

−
N∑

k=1

(x̂
(t−1)
k [3])−2C(t+1)x̂ky

T
k .

2) The Maximization step when using both a triangulation
Lidar and an odometer: In this case the matrix C is equal to

C =

[
C[1]
C[2]

]
=

[
αl
0 αl

1 αl
2

αo
0 αo

1 αo
2

]
where the parameters of the triangulation Lidar are given by
C[1] and βl

2, and the ones of the odometer are given by C[2]
and βo

0 .
Given the x̂(t) computed in the E step, and the fact that the

two sensors are independent, the estimation of the two sets of
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parameters can be performed independently. Thus for C[1] and
βl
2 we can proceed as in Section IV-C1, while for C[2] and βo

0

we proceed considering that, given model (1) and using again
ML interpretations,

C(t+1)[2] =

(
N∑

k=1

ykx̂
T
k|N

)(
N∑

k=1

x̂k|N x̂T
k|N + Pk|N

)−1

(
βo
0
(t+1)

)2
=

1

N

N∑
k=1

yky
T
k −

N∑
k=1

C(t+1)[2]x̂ky
T
k

(17)
3) The Maximization step when using a triangulation Lidar,

an odometer and a sonar: In this case the matrix C is equal
to

C =

C[1]
C[2]
C[3]

 =

αl
0 αl

1 αl
2

αo
0 αo

1 αo
2

αu
0 αu

1 αu
2


where the parameters of the triangulation Lidar are given by
C[1] and βl

2, the ones of the odometer are given by C[2] and
βo
0 , and the ones of the ultrasonic ranger are given by C[3] and

βu
0 . The situation is as before, where sensors’ parameters can

be learned independently; one may then repeat the procedures
in Sections IV-C1 and IV-C2, and then apply strategy (17) for
the particular case of the ultrasonic data yu and C[3].

V. USING THE RESULTS OF THE EM CALIBRATION
ALGORITHM FOR TESTING PURPOSES

The EM algorithm in Section (IV) returns two different
quantities:

• an estimate x̂ of the latent variables x, from which one
can also estimate the various dks;

• an estimate θ̂ of the calibration parameters θ.
The EM strategy thus can be directly used to transform the raw
measurements y into some statistical estimate of the distances
dk. Nonetheless the EM algorithm may be computationally
demanding, and one may prefer to run it only when strictly
necessary.

Assume thus to have run the EM calibration algorithm
fully once, and want now to process some new raw data
with a more lightweight estimation strategy. Given that we
have θ̂, at this point to obtain an estimated x̂ (and thus
d̂ks) one simply has to run just once the Kalman smoother
defined in Algorithm 1 (again with initial conditions x̂

(0)
k =[

1,mean(yk), . . . ,mean(yk)Nmax−1
]
).

As will be shown in Section VI, this heuristic is fast and
provides results similar to a dedicated complete EM algorithm
when applied to a dataset with small sample size.

VI. NUMERICAL RESULTS

We consider datasets where the same robot moves with
different constant speeds (0.1, 0.2, and 0.3 m/s) towards a
fixed wooden target starting at a distance of 0.5m and ending
at a distance of 4m. The experiment setup is shown in Figure 2.
The robot mounts a Lidar, an odometer, and a sonar sensors,
and we collect the groundtruth distances dks using a Vicon
motion capture system. We measure the statistical performance

speed = constant

Fig. 2. Photo of the experimental setup used for collecting the dataset. The
photo shows the robot, the Lidar and the wooden target.

of an estimate d̂1, . . . , d̂N with the normalized empirical Mean
Squared Error (MSE)

NMSE :=
1

N

N∑
k=1

∥∥∥d̂k − dk

∥∥∥2
‖dk‖2

.

A. Testing the strategy in Section IV

We now analyze how the groundtruth-less EM calibration
procedure compares w.r.t. a groundtruth-based one, and what is
the influence of using more than one sensor. More specifically,
Figure 3 plots the normalized MSE for the full EM strategy
in Section IV. As the legend indicates, the figure considers
different combinations of sensors or calibration algorithms:
indeed raw Lidar data indicates the MSE of the Lidar
measurements ylk, while groundtruth-based indicates the MSE
obtained when training2 the estimator proposed in [16]. The
three remaining signals indicate different combinations of
sensors. Eventually the figure presents the results obtained
for different robot speeds.

The collected evidence indicates that in our setup combining
odometry measurements does not improve the estimation
outcomes while adding the sonar does. Moreover increasing the
speed of the robot (that in practice corresponds to diminishing
the number of samples in the dataset) leads, as expected, to a
generalized worsening of the estimation performance.

Figure 4 eventually gives a rough indication of how the
computational complexity of our EM strategy depends on the
number of samples in the dataset and on the number of sensors
used. More precisely the figure plots the convergence time of
the algorithm implemented in Matlab on a standard laptop.

B. Testing the strategy in Section V

We then analyze if it is necessary to run the full EM
algorithm every time, or if we can do just one calibration
once and after that use the Kalman smoother. Beside this, we
check if and (in case) how the performance of the Kalman
smoother depends on the size of the test dataset.

2Notice that for this case we considered the training MSE and not the test
one so to be even more unfavorable comparisons against our novel procedure.
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raw Lidar data
[16] (groundtruth-based)
EM (Lidar only)
EM (Lidar and odometer)
EM (Lidar odometer and sonar)

Fig. 3. Comparison of the normalized empirical MSE for various types of
estimators testing using different combinations of Lidar, odometer and sonar
sensors.

240 156 127
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20
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n

[s
]

Lidar
Lidar and odometer
Lidar odometer and sonar

Fig. 4. Dependency of the convergence time of the algorithm on the number
of samples in the dataset used for training purposes.

To answer these questions we use one dataset recorded at
0.1 m/s for performing the training step (i.e., we use the richest
dataset in terms of number of samples), and we then apply
the Kalman smoother as indicated in Section V to the other
datasets.

Figure 5 then shows the normalized empirical MSE indexes
obtained for various speeds and estimators. In this figure
raw Lidar data indicates once again the MSE of the raw
Lidar measurement ylk, and groundtruth-based indicates the
MSE obtained testing the estimator proposed in [16] and
trained as in Figure 3. The other three entries instead refer
to using the Kalman smoother on test sets windows that are
12 samples long; for these estimators, each bar in the plot
thus represents the average of the MSEs calculated along the
whole dataset at a given speed. We notice how the novel
strategy compares favorably against the groundtruth-based one,
indicating that it reaches good generalization capabilities. Also
in this plot, combining the odometer measurements with the
Lidar measurements does not improve the MSE in most of the
cases.

Figure 6 eventually answers the question about how the
performance of the Kalman smoother depends on the size
of the training set, focusing just on the case where one uses

0.1 0.2 0.3
0.00

0.02

0.04

linear speed of the robot [m/s]

N
or

m
al

iz
ed

M
SE

raw Lidar data
[16] (groundtruth-based)
Kalman smoother (Lidar only)
Kalman smoother (Lidar and odometer)
Kalman smoother (Lidar odometer and sonar)

Fig. 5. Comparison of the test-set performance of various estimators.

only the Lidar sensor. We see that larger sample sizes almost
always return a smaller MSE, and that also increasing the robot
linear speed seems to decrease the normalized MSE for speeds
smaller than 0.4 m/s.

0.1 0.2 0.3
0.000

0.005

0.010

linear speed of the robot [m/s]

N
or

m
al

iz
ed

M
SE size = 3 samples

size = 12 samples
size = 24 samples

Fig. 6. Dependency of the performance of the Kalman smoothing strategy on
the size of the test set.

C. Analysis of the sensitivity of the results against errors in
the heading angles

Theoretically it may be possible to design opportune hy-
pothesis testing algorithms for detecting if the robot is turning
while moving, i.e., if it is violating our standing assumption of
traveling along a line. This issue, however, is both outside
the scope of this manuscript plus it deserves a thorough
discussion and analysis; we thus neglect this problem for now
and consider it as a future work. We are instead interested in
understanding how sensitive the results we presented above
are on the violation of the standing assumption of movement
along a line (something that, being ideal, will never actually
occur in practice).

To this aim we first verify how much our experiments violate
this assumption. We thus plot in Figure 7 how much the actual
heading of our robot changed in time when applying to it one
movement-command, and this for several experiments with
different speeds. As it can be noticed from the figure, the
maximal absolute robot heading error was below 0.3°.



9

In order to quantify the effect of this heading angle error
on both the estimate of the model parameters and on the
final estimate of the distance between the robot and the
target we use Monte Carlo approach where we run 100
independent simulations for different heading angle errors
comprised between −5° and 5° and with an angular separation
of 0.25°. We then show graphically the influence of these
heading angle errors on the outcomes of both the parameter
estimation and distance estimation algorithms in Figures 9 and
8 respectively. Remarkably, and according to the simulation
results, non negligible initial heading errors lead to negligible
final effects. A posteriori this is actually expected, since the
cosine of the non-null heading angles errors will be almost
equal to 1 (specially for heading angles smaller than 0.3°).

−2 −1 0 1 2

3.55

3.6

3.65

groundtruth x [m]

gr
ou

nd
tr

ut
h
y

[m
]

0.1m/s 0.2m/s 0.3m/s

Fig. 7. The actual path that our robot performed during some of our lab
experiments. In these cases the robot was given a single command of performing
a linear-movement for different translation speeds.

−4 −2 0 2 4
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rm
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Fig. 8. Monte Carlo simulations showing the effect of the error on the heading
angle on the normalized mean squared distance estimation error.
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α̂0 α̂1 α̂2

Fig. 9. Monte Carlo simulations showing the effect of the error on the heading
angle on the final estimated model parameters.

VII. CONCLUSIONS

We designed and tested an approximated EM intrinsic
parameters calibration strategy that can calibrate sets of either
homoscedastic or heteroscedastic sensors such as Lidars, sonars
and odometers. The algorithm does not require knowledge on
groundtruth information, but alternatively exploits assumptions
of motion along a line and knowledge about which actuation
inputs have been given to the motors of the robot carrying the
distance sensors.

The purpose of this effort is to make it possible (and
computationally cheap) for terrestrial robots to autonomously
recalibrate their sensors whenever they feel they need it, without
having to go back to the factory or requiring the aid of
technicians.

The proposed calibration procedure has also been shown to
compete with alternative groundtruth-based strategies, validat-
ing thus our efforts at least in our experimental setup.

The numerical results indeed indicate that:
1) the novel groundtruth-less calibration strategy leads to

results that are similar to the ones that can be obtained with
groundtruth-based strategies (and sometimes even better).
This is not totally surprising: we indeed postulate that the
information on the actuation signal given to the robots’
wheels (that was not used, e.g., in [16]) compensates for
the loss of the groundtruth;

2) adding odometers and sonars tend to improve the overall
estimation performance, but the improvement also tends
to be quite contained, indicating that the additional
information brought from these sensors is minimal;

3) violating the standing assumption of the movement being
confined to a line is not disrupting the proposed estimation
procedures, since the sensitivity of these errors on the
heading error has been numerically evaluated as very low.

Despite promising, the strategy hasn’t been fully developed
yet: future research efforts are then directed to both prove
the theoretical convergence properties of the overall EM
scheme, plus generalize the strategy towards also aerial robotic
applications, where our assumptions on the robot moving
on a line are not valid anymore. Moreover an interesting
research direction is on understanding how to infer if the
robot is not moving along a line from the data and potentially
additional assumptions on the structure of the surrounding
environment. This indeed would help developing a control
signal that guarantees straight-line motions, that is of particular
interest in robotics applications.

APPENDIX
EQUATIONS OF GENERIC EM ALGORITHM

Consider the following generic model[
xk+1

yk

]
=

[
A B
C 0

] [
xk

1

]
+

[
wk

vk

]
(18)

with wk ∼ N (0, Q) and iid, vk ∼ N (0, βRk) and iid, 0 a
vector of zeros with opportune dimensions, Q and Rk are
diagonal matrices and β2 is unknown scalar.

Given a measurement sequence {yk} and the fully known
initial condition x1 ∼ N (µd,Σd), we would like to apply the
EM to estimate the matrix C and the scalar β2.
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A. Compute `
(
θ, θ̂(t)

)
Computing `

(
θ, θ̂(t)

)
requires finding log p (y,x ; θ);

given the above model and follow the same procedure described
in Subsection IV-B gives

`
(
θ, θ̂(t)

)
= C +

N∑
k=0

(
log detΣk

−1 − tr (Ek)
)

(19)

with, for k = 0, Σ0 = Σd and

E0 := E
p
(
x|y ; θ̂(t)

) [Σ−1
d (x1 − µd) (x1 − µd)

T
]

and, for k = 1, . . . , N ,

Ek := E
p
(
x|y ; θ̂(t)

) [Σ−1
k

([
xk+1

yk

]
−
[
A B
C 0

] [
xk

1

])
([

xk+1

yk

]
−
[
A B
C 0

] [
xk

1

])T
]

and
Σk :=

[
Q 0
0T β2Rk

]
since we are interested in finding C and β, calculating tr (Ek)
requires computing the following quantities

E
p
(
x|y ; θ̂(t)

) [xkx
T
k

]
E
p
(
x|y ; θ̂(t)

) [ykxT
k

]
.

We follow the same procedure in [28] and using the identity
cov

(
xk, x

T
k

)
:= Ep

[
xkx

T
k

]
− Ep [xk]Ep

[
xT
k

]
or

Pk|N = E
p
(
x|y ; θ̂t

) [xkx
T
k

]
− x̂k|N x̂T

k|N

also

E
p
(
x|y ; θ̂t

) [ykxT
k

]
= ykE

p
(
x|y ; θ̂t

) [xT
k

]
= ykx̂

T
k|N .

Therefore we need to find the terms x̂T
k|N and Pk|N in the E

step

B. E step

given θ̂(t) i.e., the estimate of the parameters at iteration t,
compute

`
(
θ, θ̂(t)

)
= E

p
(
x|y ; θ̂(t)

) [log p (y,x ; θ)]

which is finding the smoothed state x̂T
k|N and the smoothed

covariance Pk|N . This can be done optimally using appropriate
Kalman smoother as explained in Algorithm 2

C. M step

compute θ̂(t+1) := {Ĉ(t+1), β̂2
(t+1)

} using

θ̂(t+1) = argmax
θ

`
(
θ, θ̂(t)

)
.

We present here a detailed derivation of the maximization
step for the generic model (18). Starting with Equation (19)

Algorithm 2 Kalman smoother for the Expectation step

1: Requires: C(t), (β2)(t)

2: set (initial conditions for the forward pass)

P1|1 = Σ1 x̂1|1 = µ1

3: compute, for k = 2, . . . , N (forward pass)

Pk|k−1 = APk−1|k−1A
T +Q

Kk = Pk|k−1C
(t)T

(
C(t)Pk|k−1C

(t)T +Rk(β
2)(t)

)−1

Pk|k = Pk|k−1 −KkC
(t)Pk|k−1

x̂k|k−1 = Ax̂k−1|k−1 +B1

x̂k|k = x̂k|k−1 +Kk

(
yk − C(t)x̂k|k−1

)
4: set (initial conditions for the backwards pass)

MN |N =
(
I −KNC(t)

)
APN−1|N−1

5: compute, for k = N, . . . , 1 (backwards pass)

Jk = Pk|kA
TP−1

k+1|k

Pk|N = Pk|k + Jk
(
Pk+1|N − Pk+1|k

)
JT
k

x̂k|N = x̂k|k + Jk
(
x̂k+1|N −Ax̂k|k −B1

)
Mk|N = Pk|kJ

T
k−1 + Jk

(
Mk+1|N −APk|k

)
JT
k−1

(the last equation being performed only when k 6= N )

since we would like to estimate C and β, we keep only thesecond row of Ek, we call it Ēk for k = 1, . . . , N ,

`
(
θ, θ̂(t)

)
∝ −

N∑
k=1

log β2 −
N∑

k=1

tr
(
Ēk
)

Ēk := E
p
(
x|y ; θ̂(t)

) [β−2R−1
k (yk − Cxk) (yk − Cxk)

T
]

Taking the zero of the score with respect to C and using the
matrix derivative identity

∂
∂X tr

(
(AXB + C) (AXB + C)

T
)

= 2ATAXBBT +

2ATCBT . In this case A = I , C = −yk and B = xk, yields

∂`
(
θ, θ̂(t)

)
∂C

= 2

N∑
k=1

E
p
(
x|y ; θ̂(t)

) [β−2R−1
k Cxkx

T
k

]
−2

N∑
k=1

E
p
(
x|y ; θ̂(t)

) [β−2R−1
k ykx

T
k

]
for single output case (Rk is 1 × 1), we can solve for C to
obtain the estimator

C(t+1) =

(
N∑

k=1

E
p
(
x|y ; θ̂(t)

) [R−1
k ykx

T
k

])
(

N∑
k=1

E
p
(
x|y ; θ̂(t)

) [R−1
k xkx

T
k

])−1

.

(22)

Now to find β2, we use the identity tr (aX) = atr (X) for
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scalar a, then taking the zero of the score with respect to β2

∂`
(
θ, θ̂(t)

)
∂β2

= −N

β2
+ β−2

N∑
k=1

tr
(
Ēk
)
= 0 or

(β2)(t+1)=
1

N

N∑
k=1

E
p
(
x|y ; θ̂(t)

)[R−1
k (yk − Cxk) (yk − Cxk)

T
]

for the case of single output, we can substitute for C(t+1)

from Equation (C) in the last term of the bracket expansion,
then simplify to obtain

(β2)(t+1) =
1

N

N∑
k=1

E
p
(
x|y ; θ̂(t)

)[R−1
k

(
yky

T
k − C(t+1)xky

T
k

)]
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