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Abstract— We extend a multi-agent convex-optimization algo-1

rithm named Newton-Raphson consensus to a network scenario2

that involves directed, asynchronous and lossy communications.3

We theoretically analyze the stability and performance of the4

algorithm and, in particular, provide sufficient conditions that5

guarantee local exponential convergence of the node-states to6

the global centralized minimizer even in presence of packet7

losses. Finally, we complement the theoretical analysis with8

numerical simulations that compare the performance of the9

Newton-Raphson consensus against asynchronous implemen-10

tations of distributed subgradient methods on real datasets11

extracted from open-source databases.12

I. INTRODUCTION13

Distributed optimization algorithms are important building14

blocks in several estimation and control problems arising in15

peer-to-peer networks. To cope with real-world requirements,16

these algorithms need to be designed to work under asyn-17

chronous, directed, faulty and time-varying communications.18

Unfortunately, despite being the literature on distributed19

optimization already rich, most of the existing contributions20

have been proved to work in networks whose communication21

schemes follow synchronous, undirected, and often time-22

invariant information exchange mechanisms.23

Early references on distributed optimization algorithms24

involve primal subgradient iterations [1]. Sub-gradient based25

algorithms have the advantage of being simple to implement26

and suitable for non-differentiable cost functions. Moreover,27

they recently have been extended to directed and time-28

varying communication [2], [3]. However, these algorithms29

exhibit sub-linear convergence rates.30

More recently, primal subgradient strategies have been31

proposed with guaranteed convergence in directed com-32

munication graphs [4] and in time-varying event-triggered33

communication schemes [5]. However, these schemes require34

weight-balanced graphs, an assumption that is difficult to be35

satisfied in the presence of lossy communication.36

A second set of contributions is based on dual decom-37

position schemes. The related literature is very large and38

we refer to [6] for a comprehensive tutorial on network39
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optimization via dual decomposition. A very popular dual 40

distributed optimization algorithm that have improved ro- 41

bustness in the computation and convergence rate in the case 42

of non-strictly convex functions is the so called Alternating 43

Direction Method of Multipliers (ADMM). A first distributed 44

ADMM implementation was initially proposed in [7], and 45

since then several works have appeared as accounted by the 46

survey [8]. Recently, contributions have been dedicated to 47

increase the convergence speed of this technique by means of 48

accelerated consensus schemes [9], [10]. All these algorithms 49

have been proved to converge to the global optimum under 50

the assumption of fixed and undirected topologies. 51

Another class of distributed optimization algorithms ex- 52

ploits the exchange of active constraints among the network 53

nodes. A constraints consensus algorithm has been proposed 54

in [11] to solve linear, convex and general abstract programs. 55

These were the first distributed optimization algorithms 56

working under asynchronous and direct communication. Re- 57

cently the constraint exchange idea has been combined with 58

dual decomposition and cutting-plane methods to solve dis- 59

tributed robust convex optimization problems via polyhedral 60

approximations [12]. Although well-suited for asynchronous 61

and directed communications, these algorithms mainly solve 62

constrained optimization problems in which the number of 63

constraints is much smaller than the number of decision 64

variables (or vice-versa). 65

Other optimization methods include algorithms that try to 66

exploit second-order derivatives, i.e., the Hessians of the cost 67

functions as in [13], [14], where the distributed optimization 68

is applied to general time-varying directed graphs. Another 69

approach, based on Newton-Raphson directions combined 70

with consensus algorithms, has been proposed in [15]: this 71

technique works under synchronous communication, and has 72

recently been extended to asynchronous symmetric gossip 73

frameworks [16]. 74

Importantly, all the works mentioned above require re- 75

liable communication; and, to the best of our knowledge, 76

there is no distributed optimization algorithm that has been 77

proved to be guaranteed to converge in the presence of lossy 78

communication. Aiming at filling this gap, we here extend 79

the aforementioned Newton-Raphson consensus approach 80

in [15], [16] to an asynchronous, directed and unreliable net- 81

work set-up. Specifically, we design a distributed algorithm 82

which works under an asynchronous broadcast protocol over 83

a directed graph and that is robust with respect to packet 84

losses. 85

The first main contributions of this paper is to endow 86

the Newton-Raphson algorithm in [15] with two additional 87



strategies: first, a push-sum consensus method, proposed1

in [17] to achieve average consensus in directed networks;2

second, a robust consensus method, proposed in [18] to3

achieve average consensus in presence of packet losses4

through keeping memory of the total mass of the internal5

states of the algorithm, so that nodes can recognize if they6

missed some information at a certain point, and reconstruct7

it.8

The rationale under the combination of the push-sum and9

robustification protocols with the Newton-Raphson consen-10

sus is the following. In the Newton-Raphson consensus,11

nodes continuously update estimates of a Newton descent12

direction by means of an average consensus, that forces the13

nodes to share a common descent direction. Thus, if this av-14

eraging property is maintained under asynchronous, directed15

and lossy communication, the convergence properties of the16

descent updates can be preserved.17

The second main contribution of this paper is to show18

that, under suitable assumptions on the initial conditions and19

on the step-size parameter, the Newton-Raphson consensus20

is locally exponentially stable around the global optimum21

as soon as the local costs are C2 and strongly convex22

with second derivative bounded from below. The exponential23

convergence is achieved even in the presence of lossy and24

broadcast communication, as long as the communication25

graph is strongly connected and the number of consecutive26

packet losses is bounded. The proof relies on a time-scale27

separation of the Newton descent dynamics and the average28

consensus one. This result thus extends the findings of [19],29

where the convergence was proved for the quadratic local30

costs case.31

The third main contribution of this paper is to complement32

the theoretical results with numerical simulations based33

on real datasets extracted from an open-source database.34

Findings then confirm the local exponential stability and the35

exponential rate of convergence on a problem where the local36

cost functions are smooth and convex.37

The paper is organized as follows: Section II formulates38

our problem and working assumptions. Section III then39

introduces the proposed algorithm and gives some intuitions40

on the convergence properties of the scheme, which are then41

summarized in Section V. Finally, Section VI collects some42

numerical experiments corroborating the theoretical results.43

II. PROBLEM FORMULATION AND ASSUMPTIONS44

Problem formulation: we consider the separable opti-45

mization problem46

x∗ := min
x

N∑

i=1

fi(x) (1)47

under the assumptions that each fi is known only to node48

i and is C2, and strongly convex with second derivative49

bounded from below, i.e., f ′′i (x) > c for all x (so that fi50

is coercive). For notational convenience and w.l.o.g. we deal51

with the scalar case, i.e., x ∈ R.52

We then aim at designing an algorithm solving (1) with53

the following features:54

(i) being distributed: each node has limited computational 55

and memory resources and it is allowed to communi- 56

cate directly only with its in- and out-neighbors; 57

(ii) being asynchronous: nodes do not share a common 58

reference time, but rather perform actions according 59

to local clocks independent of each other; 60

(iii) being robust w.r.t. packet losses: packets broadcast by 61

a node may sometimes be not received by its out- 62

neighbors due to, e.g., collisions or fading effects. 63

Assumptions: formally, we consider a network rep- 64

resentable through a given, fixed, directed and strongly 65

connected graph G = (V, E) with nodes V = {1, . . . , N} 66

and edges E ⊆ V×V so that (i, j) ∈ E iff node j can directly 67

receive information from node i. With N out
i we denote the set 68

of out-neighbors of node i, i.e., N out
i := {j ∈ V | (i, j) ∈ E} 69

is the set of nodes receiving messages from i. Similarly, with 70

N in
i we denote the set of in-neighbors of i, i.e., N in

i := 71

{j ∈ V | (j, i) ∈ E}. 72

As for the concept of time, we assume that each node has 73

its own clock that locally and independently triggers when 74

to transmit. With σ(t) ∈ {1, . . . , N}, t = 1, 2, . . . be the 75

sequence identifying the generic triggered node at time t, 76

i.e., σ(1) is the first triggered node, σ(2) the second, etc., 77

so that σ(t) is a process on the alphabet {1, . . . , N}. When 78

a node is triggered, it performs some local computation and 79

then broadcasts some information to its out-neighbors. Due 80

to unreliable communication links, this information can be 81

potentially lost. 82

We assume that to solve (1) each node i stores in its 83

memory a local copy, say xi (also called local estimate or 84

local decision variable), of the global decision variable x. 85

With this new notation (1) reads as 86

min
x1,...,xN

N∑

i=1

fi(xi) s.t. xi = xj for all (i, j) ∈ E . (2) 87

Notice that the strong connectivity of graph G ensures then 88

that the optimal solution of (2) is given by x1 = . . . = xN = 89

x∗, i.e., ensures that problems (1) and (2) are equivalent. 90

III. THE ROBUST ASYNCHRONOUS NEWTON-RAPHSON 91

CONSENSUS ALGORITHM 92

We now introduce an algorithm suitable for solving prob- 93

lem (1) under the asynchronous and lossy communication 94

assumptions posed in Section II. The procedure, called 95

robust asynchronous Newton-Raphson Consensus (ra-NRC) 96

and reported in Algorithm 1, has been initially presented 97

in [19] but is reported here for completeness and ease of 98

reference. In the pseudo-code we assume w.l.o.g. σ(t) = i, 99

i.e., that the node that triggers at iteration t is the node i. 100

We assume that every node i stores in its memory the 101

variables xi, gi, hi, yi, zi, bi,y , bi,z , and r(j)i,y , r(j)i,z for every 102

j ∈ N in
i , with the following meanings: 103

• xi represents the current local estimate at node i of the 104

global minimizer x∗; 105

• gi and hi represent some specific function of the first 106

and second derivatives of the local cost fi(xi) computed 107



at the current value of xi. gold
i and hold

i represent the old1

values of gi and hi at the previous local step;2

• yi and zi represent respectively the local estimate at3

node i of the global sums
∑

i gi and
∑

i hi;4

• bi,y and bi,z represent respectively quantities that are5

used by node i to locally keep track of the total mass6

of the internal states yi and zi. Notice that bi,y and bi,z7

are the only local variables that are broadcast by node8

i to its out-neighbors;9

• r(i)j,y and r
(i)
j,z represent respectively quantities that are10

used by node j to locally keep track of the total11

mass of the internal states yi and zi of i, that are in12

general inaccessible by j. In other words, with r
(i)
j,y13

and r
(i)
j,z node j tracks the status of node i: when the14

communication link from i to j does not fail, then node15

j updates r(i)j,y and r(i)j,z with the received bi,y and bi,z .16

Otherwise, when the communication link from i to j17

fails, then r
(i)
j,y and r

(i)
j,z remain equal to the previous18

total mass received.19

Thus the ra-NRC algorithm builds on top of broadcast-like20

average consensus protocols [17] (i.e., the structure of the21

updates of the variables yi and zi) and of strategies for22

handling packets losses in consensus schemes [18] (i.e., the23

way of using the variables bi,y , bi,z , r(i)j,y and r(i)j,z to prevent24

information losses through mass-tracking robust strategies).25

We also notice that the algorithm exploits the thresholding
operator

[z]c :=

{
z if z ≥ c
c otherwise.

where c is a positive scalar to be properly chosen to avoid26

division-by-zero in the algorithm.27

Initialization of the ra-NRC algorithm: we assume that
every agents perform the following initialization step of
the local variables: let xo be a common initial estimate
of the global minimizer (may be chosen equal to zero for
convenience). Then

xi = xo

yi = gold
i = gi = f ′′i (x

o)xo − f ′i(xo) =: yoi

zi = hold
i = hi = f ′′i (x

o) =: zoi .

IV. INFORMAL DESCRIPTION OF THE CONVERGENCE28

PROPERTIES OF THE ALGORITHM29

We now provide an intuitive verbal description of the main30

features and intuitions behind the proposed algorithm, before31

presenting a mathematical characterization in the following32

Section V.33

We start by noticing that the only free parameter of the34

algorithm is given by the scalar ε ∈ (0, 1]. This parameter35

is fundamental since it regulates the trade-off between the36

stability of the algorithm and its speed of convergence.37

Indeed the algorithm is characterizable through two distinct38

dynamics: a fast one, which distributedly computes averages39

of the yi’s and zi’s based on a robust consensus algorithm,40

and a slow dynamics, that estimates the minimizer of the41

Algorithm 1 robust asynchronous Newton-Raphson Consen-
sus (ra-NRC)

1: on wake-up, and before transmission, node i updates its
local variables as

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]

zi ←
1

|N out
i |+ 1

[
zi + hi − hold

i

]

gold
i ← gi

hold
i ← hi

xi ← (1− ε)xi + ε
yi
[zi]c

gi ← f ′′i (xi)xi − f ′i(xi)
hi ← f ′′i (xi)

bi,y ← bi,y + yi

bi,z ← bi,z + zi

2: node i then broadcasts bi,y and bi,z to its neighbors;
3: every out-neighbor j ∈ N out

i updates (if receiving the
packet, otherwise it does nothing) its local variables as

yj ← bi,y − r(i)j,y + yj + gj − gold
j

zj ← bi,z − r(i)j,z + zj + hj − hold
j

gold
j ← gj

hold
j ← hj

xj ← (1− ε)xj + ε
yj
[zj ]c

gj ← f ′′i (xj)xi − f ′i(xj)
hj ← f ′′i (xj)

r
(i)
j,y ← bi,y

r
(i)
j,z ← bi,z

global cost function using the ratio of the averaged yi’s and 42

zi’s as a Newton direction. More specifically, the variables 43

xi are associated to the slow dynamics, while all the other 44

variables yi, zi, gi, hi, bi,z, bi,y, r
(i)
i,y, r

(i)
i,z are associated to the 45

fast dynamics. 46

The parameter ε regulates then the separation of these two 47

time scales: the smaller ε is, the larger this separation is, so 48

that small ε’s imply slow distributed averaging of the yi’s 49

and zi’s. On the other hand, the rate of convergence of the 50

slow dynamics, i.e., of the Newton-Raphson on the xi’s, can 51

be shown to be locally given by (1− ε); therefore small ε’s 52

imply also slower convergence towards the global optimum. 53

In the following we use the symbol → to indicate the 54

behavior of a certain variable as the number of iterations 55

of Algorithm 1 goes to infinity, while we reserve ← for 56

denoting values assignment operations (e.g., xi ← xo reads 57

as “variable xi assumes the value xo”). 58



A. Intuitions behind the fast dynamics: the case ε = 01

As ε approaches zeros, xi changes very little from one
iteration to the other, i.e., xi ≈ cost.. Indeed if we assume
ε = 0, then the local estimate update rule becomes xi ← xi,
so that gi ← gold

i and hi ← hold
i , i.e., constant values.

Therefore in this case the dynamics of yi only depends on
its initial value f ′′i (xi)xi−f ′i(xi) and on the communication
sequence. Similar considerations hold for zi’s. Thus in this
case the variables yi and zi evolve as the robust ratio
consensus described in [18], i.e.,

yi → ρi

(
1

N

N∑

i=1

(
f ′′i (xi)xi − f ′i(xi)

))

zi → ρi

(
1

N

N∑

i=1

f ′′i (xi)

)

where 0 < ρi ≤ 1 is some scalar that depends on the packet
loss sequence. Thus, regardless of the specific communica-
tions and packet losses sequence,

yi
zi
→
∑

i f
′′
i (xi)xi − f ′i(xi)∑

i f
′′
i (xi)

=: φ(x1, . . . , xN )

i.e., all the local ratios
yi
zi

converge to the same value φ.2

B. Intuitions behind the slow dynamics: the case
yi
zi

=3

φ(x1, . . . , xN )4

The slow dynamics can be obtained by assuming that
the fast dynamics has converged to steady-state value con-
sidering ε = 0. The idea is that if ε ≈ 0, then also
yi(k)

zi(k)
≈ φ(x1, . . . , xN ). In this scenario, the dynamics of

each local variable xi can then be written as

xi ← (1− ε)xi + εφ(x1, . . . , xN ), i = 1, . . . , N.

This implies that all the various agents update the local
values with the same identical rule; thus nodes behave in
this case as N identical systems that are driven by the same
forcing term. This implies that any difference in the initial
value of xi will vanish, eventually leading to

xi → x, ∀i = 1, . . . , N.

In this case, moreover,

φ(x1, . . . , xN )→
∑

i f
′′
i (x)x− f ′i(x)∑

i f
′′
i (x)

= x− f
′
(x)

f
′′
(x)

where f(x) :=
∑

i fi(x). Thus the dynamics of the local
variables are of the form

x← (1− ε)x+ ε

(
x− f

′
(x)

f
′′
(x)

)
= x− ε f

′
(x)

f
′′
(x)

,

i.e., a Newton-Raphson algorithm that, under the posed
smoothness assumptions on the local fi’s, converges to the
solution of (1). Thus,

xi → x∗ ∀i = 1, . . . , N, ∀xo ∈ R.

C. Intuitions behind the local rate of convergence 1− ε 5

The previous analysis allows to estimate the rate of
convergence around the global minimum x∗. In fact, if we
assume a sufficiently large separation of time scales (i.e., the
average consensus on the yi’s and zi’s to be much faster than
the Newton-Raphson dynamics), then the rate of convergence
of the whole algorithm is dominated by the slow dynamics. If
then one further assumes the fi(x) to be C3 then the Newton-
Raphson dynamics can be linearized so to obtain

d

dx

f
′
(x)

f
′′
(x)

∣∣∣∣∣
x=x∗

=
f
′′
(x)

f
′′
(x)
− f

′
(x)f

′′′
(x)

(f
′′
(x))2

∣∣∣∣∣
x=x∗

= 1

where we used the fact that f
′
(x∗) = 0. Therefore, the dy-

namics of the Newton-Raphson component of the algorithm
around the equilibrium point x∗ can be written as

x+ ≈ x− ε(x− x∗)⇒ (x− x∗)+ ≈ (1− ε)(x− x∗),
which clearly shows that locally the rate of convergence is 6

exponential with a rate given by (1− ε). This confirms the 7

previous intuition that smaller ε’s lead to slower convergence 8

rates. 9

D. Intuitions behind the stability properties of the ra-NRC 10

algorithm 11

As discussed above, ε dictates the relative speed of the fast 12

dynamics (driving the variables yi and zi to a consensus), and 13

the slow dynamics for the Newton-Raphson-like evolution of 14

the local estimates xi. The parameter ε, moreover, dictates 15

how much each node i trusts
yi
zi

as a valid Newton direction. 16

During the transient, indeed, this ratio is not the Newton 17

direction of neither the local nor the global cost computed 18

at the current xi. 19

Clearly, if the consensus on the yi’s and zi’s is much faster 20

than the evolution of the xi’s (i.e., if ε is “small enough”) 21

then one can expect that the aforementioned separation of 22

time scales holds, so that all the quantities converge to their 23

equilibria and the overall algorithm converges. But if ε is 24

not sufficiently small then the stability of the overall system 25

is not guaranteed: indeed, in the following section we prove 26

that there always exists a suitable critical value εc such that 27

for all 0 < ε < εc the algorithm is locally exponential stable, 28

while nothing can be said for ε > εc. 29

Notice that estimating (even offline) such εc is a very 30

difficult task, and that explicit bounds are often very con- 31

servative. Unfortunately, moreover, the difficulty of finding 32

conservative bounds on εc conflicts with the practical neces- 33

sity of having high ε’s (the higher ε, the faster the algorithm 34

converges – if converging – to the optimum). 35

V. THEORETICAL ANALYSIS OF THE ROBUST 36

ASYNCHRONOUS NEWTON-RAPHSON CONSENSUS 37

We now provide a theoretical analysis of the proposed 38

algorithm under asynchronous and lossy communication 39

scenarios. In particular we provide some sufficient condi- 40

tions that guarantee local exponential stability under the 41

assumptions posed in Section II. We thus extend our previous 42



work [19], dedicated to the quadratic local costs case, to more1

generic local convex costs.2

Informally, we assume that each node updates its local3

variables and communicates with its neighbors infinitely4

often, and that the number of consecutive packet losses is5

bounded. Formally, we assume that:6

Assumption V.1 (Communications are persistent) For7

any iteration t ∈ N there exists a positive integer number8

τ such that each node performs at least one broadcast9

transmission within the interval [t, t + τ ], i.e., for each10

i ∈ {1, . . . , N} there exists ti ∈ [t, t+τ ] such that σ(ti) = i.11

12

Assumption V.2 (Packet losses are bounded) There exists13

a positive integer L such that the number of consecutive14

communication failures over every directed edge in the15

communication graph is smaller than L.16

The following result summarizes our characterization of17

the convergence properties of the ra-NRC algorithm:18

Theorem V.3 Under Assumptions V.1, V.2 and the assump-19

tions posed in Section II there exist some positive scalars εc20

and δ s.t. if the initial conditions xo ∈ R satisfy |xo−x∗| < δ21

and if ε satisfies 0 < ε < εc then the local variables22

xi in Algorithm 1 are exponentially stable w.r.t. the global23

minimizer x∗.24

Proof: The proof of this theorem is quite involved and25

relies on many intermediate results. In the interest of space26

we refer the interested reader to a longer version of this27

work, [20], including all the technical details in a dedicated28

Appendix.29

Introducing the notation xi(t) to indicate the value xi after
the t-th broadcast event in the whole network, Theorem V.3
reads as follows: if the hypotheses are satisfied then there
exist positive scalars C and λ < 1, possibly function of δ
and ε, s.t.

|xi(t)− x∗| ≤ Cλt, t = 1, 2, . . .

Remark V.4 Algorithm 1 assumes the initial conditions of30

the local variable xi to be all identical to xo. Although31

being not a very stringent requirement, this assumption can32

be relaxed. I.e., slightly modified versions of Theorem V.333

would hold even in the case xi = xoi as soon as all the initial34

conditions are sufficiently close to the global minimizer x∗,35

i.e., as soon as |xoi − x∗| < δ for all i = 1, . . . , N .36

Remark V.5 The initial conditions on the local variables37

yi = gold
i = gi = f ′′i (x

o)xo − f ′i(x
o) and zi = hold

i =38

hi = f ′′i (x
o) are instead more critical for the convergence of39

the local variables xi to the true minimizer x∗. As shown40

in [15], any small perturbation of these initial conditions41

can affect the equilibrium point of the algorithm, even if42

it does not affect the stability of the algorithm. In other43

words, if these perturbations are small then xi → x with44

x ≈ x∗. This implies that possible small numerical errors 45

due to the computation and data quantization do not disrupt 46

the convergence properties of the algorithm. 47

Remark V.6 Although the previous theorem guarantees 48

only local exponential convergence, numerical simulations 49

on real datasets seem to indicate that the basin of attraction 50

is rather large and stability is mostly dictated by the choice 51

of the parameter ε. 52

VI. NUMERICAL EXPERIMENTS 53

First, we empirically study the sensitivity of the conver- 54

gence speed of the proposed ra-NRC algorithm on ε and 55

on the packet loss probability in Sections VI-A and VI- 56

B, respectively. Then, we compare in Section VI-C the 57

convergence speed of the ra-NRC against the speed of 58

asynchronous subgradient schemes. 59

We consider the network depicted in Figure 1 and apply 60

our algorithm in the context of robust regression using real- 61

world data. Specifically we consider a database D containing 62

financial information on various houses. To each house j 63

there is associated an output variable yj ∈ R, which indicates 64

its monetary value, and a vector χj ∈ Rn, which represents n 65

numerical attributes of the j-th house (e.g., per capita crime 66

rate by town, index of accessibility to radial highways, etc.). 67

The database is distributed, i.e., the set D comes from N 68

different sellers that do not want to disclose their private 69

information. More specifically, each seller i owns a subset 70

Di of the global dataset D so that ∪iDi = D. Nonetheless 71

sellers want to collectively build an estimator of the prices 72

of new houses that is based on all the information possessed 73

by the peers. An approach to solve this distributed regression 74

problem is to solve an optimization problem where the local 75

costs are given by the smooth Huber costs 76

fi (x) :=
∑

j∈Di

(
yj − χT

j x− x0
)2

∣∣yj − χT
j x− x0

∣∣+ β
+ γ ‖x‖22 (3) 77

where γ is a global regularization parameter that is, for our 78

purposes, considered to be known to all agents. We then 79

consider a dataset D with |D| = 500 elements from the 80

Housing UCI repository1, randomly assigned to N = 15 81

different users communicating as in graph of Figure 1. For 82

each element we consider n = 9 features (the first 9 ones 83

in the database), so that the corresponding optimization 84

problem is 10-dimensional. The centralized optimum x∗ for 85

this problem has been computed using a centralized Newton- 86

Raphson (NR) scheme with Newton step chosen with back- 87

tracking, and terminating when the Newton decrement was 88

< 10−9. 89

A. Empirical analysis of the effects of ε on the convergence 90

speed of the ra-NRC algorithm 91

We consider a probability of packet losses fixed to 0.1, and 92

a ε that ranges in {10−4, 10−3, 10−2, 10−1}, and compare in 93

1http://archive.ics.uci.edu/ml/datasets/Housing



Fig. 1. A random geometric graph with connectivity radius 0.35.

Figure 2 the evolution of the average errors for different val-1

ues of ε. We notice how the results agree with the intuitions2

developed in the previous sections, and that, importantly,3

ε = 10−1 leads to non converging behaviors.4
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Fig. 2. Comparison of the evolutions of the trajectories of the average
errors for different values of ε and a packets loss probability p = 0.1.

B. Empirical analysis of the effects of packet losses on the5

convergence speed of the ra-NRC algorithm6

We consider a parameter ε fixed to 0.01, and a proba-7

bility of packet losses that ranges in {0, 0.2, 0.4, 0.6}, so8

to compare in Figure 3 the evolution of the average errors9

for different packets unreliability levels. We notice that, as10

expected, the severity of the packet losses negatively affects11

the convergence speed. Nonetheless the overall slowing12

effect is not disruptive, in the sense that even severe packet13

loss probabilities (namely, 0.6) do not lead to meaningless14

estimates.15
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Fig. 3. Comparison of the evolutions of the trajectories of the average errors
for the ra-NRC algorithm for different values of the packet loss probabilities
and ε = 0.01.

C. Convergence speeds comparisons 16

We consider the asynchronous subgradient scheme re- 17

ported in Algorithm 2, and numerically compare its conver- 18

gence properties against the proposed ra-NRC scheme under 19

a packet losses probability equal to 0.1. 20

Algorithm 2 Distributed Subgradient
1: on initialization, each node i initializes xi as xoi and ti

(the local counter of the number of updates) to 1;
2: on wake up, node i broadcasts xi and fi (xi) to all its

neighbors;
3: every out-neighbor j ∈ N out

i updates (if receiving the
packet, otherwise it does nothing) its local variables as

xj ←
1

2
(xi + xj) +

α

tj

(
fi(xi) + fj(xj)

)

tj ← tj + 1

For both algorithms we compute, through gridding, that 21

parameter (ε for the ra-NRC, α for the subgradient) that 22

leads to the best performance in terms of convergence speed 23

of the average guess over the various agents. We then report 24

the evolution of the average guess over time in Figure 4, 25

and notice how the higher order information used by the 26

ra-NRC scheme over the subgradient one positively affects 27

the asymptotic convergence speed of the procedure. 28
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Fig. 4. Comparison of the evolutions of the trajectories of the average
errors for the algorithms tuned with their best parameters and a packet loss
probability p = 0.1.

VII. CONCLUSIONS 29

Implementations of distributed optimization methods in 30

real-world scenarios require strategies that are both able 31

to cope with real-world problematics (like unreliable, asyn- 32

chronous and directed communications), and converge suffi- 33

ciently fast so to produce usable results in meaningful times. 34

Here we worked towards this direction, and improved an 35

already existing distributed optimization strategy, previously 36

shown to have fast convergence properties, so to make it 37

tolerate the previously mentioned real-world problematics. 38

More specifically, we considered a robustified version of 39

the Newton-Raphson consensus algorithm originally pro- 40

posed in [15] and proved its convergence properties under 41

some general mild assumptions on the local costs. From 42



technical perspectives we shown that under suitable assump-1

tions on the initial conditions, on the step-size parameter,2

on the connectivity of the communication graph and on the3

boundedness of the number of consecutive packet losses,4

the considered optimization strategy is locally exponentially5

stable around the global optimum as soon as the local costs6

are C2 and strongly convex with second derivative bounded7

from below.8

We also shown how the strategy can be applied to real9

world scenarios and datasets, and be used to successfully10

compute optima in a distributed way.11

We then notice that the results offered in this manuscript12

do not deplete the set of open questions and plausible13

extensions of the Newton Raphson consensus strategy. We14

indeed devise that the algorithm is potentially usable as a15

building block for distributed interior point methods, but that16

some lacking features prevent this development. Indeed it is17

still not clear how to tune the parameter ε online so that the18

convergence speed is dynamically adjusted (and maximized),19

how to account for equality constraints of the form Ax = b,20

and how to update the local variables xi using partition-21

based approaches so that each agent keeps and updates only22

a subset of the components of x.23
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[17] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, 80

“Weighted gossip: Distributed averaging using non-doubly stochastic 81

matrices,” in IEEE International Symposium on Information Theory 82

Proceedings (ISIT). IEEE, 2010, pp. 1753–1757. 83

[18] M. A. D. Dominguez-Garcis, C. N. Hadjicostis, and N. H. Vaidya, 84

“Distributed Algorithms for Consensus and Coordination in the Pres- 85

ence of Packet-Dropping Communication Links. Part I: Statistical 86

Moments Analysis Approach,” arXiv:1109.6391v1 [cs.SY] 29 Sep 87

2011, 2011. 88

[19] R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Distributed 89

quadratic programming under Asynchronous and Lossy Communica- 90

tions via Newton-Raphson Consensus,” in European Control Confer- 91

ence, 2015. 92

[20] ——, “Analysis of Newton-Raphson Consensus for multi-agent convex 93

optimization under asynchronous and lossy communications,” in IEEE 94

Conference on Decision and Control, 2015, [Online] Available at 95

http://automatica.dei.unipd.it/people/schenato/publications.html. 96


