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Abstract— The paper considers the problem of reconstructing1

a probability density function from a finite set of samples2

independently drawn from it. We cast the problem in a3

Bayesian setting where the unknown density is modeled via4

a nonlinear transformation of a Bayesian prior placed on5

a Reproducing Kernel Hilbert Space. The learning of the6

unknown density function is then formulated as a minimum7

variance estimation problem. Since this requires the solution8

of analytically intractable integrals, we solve this problem by9

proposing a novel algorithm based on the Markov chain Monte10

Carlo framework. Simulations are used to corroborate the11

goodness of the new approach.12

Index Terms— stochastic regularization, regularization13

parameter, Reproducing Kernel Hilbert Spaces, Metropolis-14

Hastings algorithm, stochastic processes.15

I. INTRODUCTION16

In many fields ranging from basic science to engineering17

one is often confronted with reconstructing the stochastic18

mechanism generating some observational data. Examples of19

applications abound and we cite e.g. pattern classification,20

clustering, time series prediction, characterization of21

materials, spatial modeling [1], [2], [3], [4].22

Reconstructing a probability density function is in general23

intricate. The problem is in fact intrinsically nonlinear, since24

it includes nonnegative and unitary constraints. In addition,25

it is subject to the so-called bias/variance dilemma [5], [6],26

[7]. If the hypothesis space where the unknown function is27

searched is too large, the estimate may turn out close to the28

maximum likelihood one, i.e. a sum of delta function spikes29

centered at the observations. This estimate is in general30

poor, since a priori information about the smoothness of31

the function is typically available. On the other hand, if the32

hypothesis space is too narrow, the solution could turn out too33

few adherent to experimental data, with still a poor predictive34

capability on new data.35

Parametric approaches, e.g., [8], tackle these difficulties36

assuming finite-dimensional hypothesis spaces. This is done37

by imposing a known parametric form to the unknown38

density, e.g. a mixture of Gaussians. Regularity and39

nonnegativity assumptions on the unknown function can thus40
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be easily included in the estimation process, and the problem 41

can be solved by just fitting parameters against data, e.g., 42

via standard nonlinear least squares algorithms. However, 43

the model designer has often too few information to specify 44

so strong a priori assumptions on the density shape. This 45

represents the major drawback of parametric techniques. 46

A more powerful alternative is represented by 47

nonparametric approaches, which have a wider range of 48

applicability since they do not require to postulate a fixed- 49

in-advance functional form. Examples of nonparametric 50

techniques are penalized likelihood methods [5], [9], 51

[10], [11], ad-hoc penalized likelihood methods, smoothed 52

histograms [12], kernel methods [13], [14], regularized 53

Gaussian Mixtures [15] and orthogonal series estimates [16]. 54

In particular, among the most employed approaches, we 55

cite Parzen’s window estimator, the k-nearest neighbor 56

approach and smoothing spline density estimation. Although 57

applied with success in many applications, all these methods 58

have however some limitations as how they handle the 59

bias/variance dilemma. In fact, key parameters controlling 60

the complexity of the hypothesis space and having a major 61

effect on the final estimate, e.g., the kernel width in Parzen’s 62

approach, is in practice chosen empirically. Methods used 63

to estimate the optimal values of such parameters are often 64

asymptotic [17], thus prone to error when dealing with small 65

data sets, or are based on cross validation techniques [18], 66

[9], thus possibly subject to statistical error. 67

In practice, because of the nonlinearity of the problem, 68

it is hard to define rigorous statistical criteria determining 69

the right amount of regularization to be included in the 70

estimation problem. In this paper we propose a statistical 71

modeling approach to overcome this problem. 72

In particular, we embed density estimation within 73

a stochastic framework, by interpreting Tikhonov 74

regularization as placing an opportune Bayesian prior 75

on a Reproducing Kernel Hilbert Space (RKHS) [19], 76

[18], [7]. We then solve the resulting Bayesian estimation 77

problem with a novel algorithm based on the Markov 78

chain Monte Carlo (MCMC) framework [20], [21]. In 79

particular we jointly learn the regularization parameter and 80

the unknown density function determining their minimum 81

variance estimates. The paper is organized as follows: in 82

Section II we provide the statement of the problem, then 83

formulate our statistical assumptions on the unknown density 84

function and provide a brief overview on RKHS theory in 85

Section III. In Section IV we connect our statistical model 86

with Tikhonov regularization and compare our approach 87

with some other literature. In Section V, after briefly 88



introducing the MCMC framework, we propose our novel1

numerical algorithm, In Section VI we use simulations to2

test the relative performance of the approach. Conclusions3

are finally offered in Section VII.4

II. STATEMENT OF THE PROBLEM5

In the following, given a vector w, we use wi to refer6

to the i-th component of w. Moreover, all vectors will be7

column vectors.8

We are given n random samples {yi} collected in9

the vector y and independently drawn from an unknown10

probability density function f(x). Such density is assumed11

to have support on the compact set X ⊂ Rd. Our aim is to12

estimate f from y.13

III. STATISTICAL ASSUMPTIONS ON THE UNKNOWN14

DENSITY15

Before specifying our statistical assumptions on f , we first16

briefly sketch some properties of RKHS which are relevant17

in the context of this paper.18

A. A brief overview on RKHS theory19

In the sequel, let L2(X) the classical Lebesgue space of20

square integrable functions on X , equipped with the inner21

product 〈·, ·〉2, and let also K : X ×X 7→ R.22

Definition 1. We say that K is definite positive if for23

all finite sets {x1, x2, . . . , xk} ⊂ X the k × k matrix24

whose (i, j)-th entry is K (xi, xj) is semi-definite positive.25

Moreover, we say that K is a Mercer kernel if it is26

continuous, symmetric and definite positive.27

The following proposition can be obtained by combining28

the Spectral Theorem for compact operators and Mercer’s29

theorem (see e.g. [22], [23]).30

Proposition 2. Let K(s, t) a Mercer kernel. Then there exist31

a sequence {λj ≥ 0 : λj+1 ≥ λj , j = 1, . . . ,∞} and a basis32

in L2(X) of continuous functions {φj : j = 1, . . . ,∞} such33

that34

〈φj , φk〉2 =

{
1 if j = k
0 otherwise35 ∫

X

K(s, t)φj(t)dt = λjφj(s)36

K(s, t) =

∞∑
j=1

λjφj(s)φj(t)37

38

where the above convergence is uniform in X ×X .39

The following proposition characterizes the Hilbert space40

associated to the Mercer Kernel K (see e.g. [24], [7]).41

Proposition 3. Assigned a Mercer kernel K there exists a42

unique Hilbert space H such that43

• K(x, y) ∈ H ∀x ∈ X;44

• the span of the set {K(x, ·), x ∈ X} is dense in H;45

• f(x) = 〈f(y),K(y, x)〉H ∀f ∈ H .46

In particular, the space H takes the following form 47

H =

f ∈ L2(X)

∣∣∣∣∣∣ f =

∞∑
j=1

ajφj and
∞∑
j=1

a2j
λj

<∞

 48

equipped with the inner product 〈·, ·〉H where, given f, g ∈ 49

H with f =
∑∞
j=1 ajφj and g =

∑∞
j=1 bjφj , we have 50

〈f, g〉H =

∞∑
j=1

ajbj
λj

. 51

The space H is also known in literature as the RKHS 52

associated to the reproducing kernel K. Remarkably, the 53

above Proposition enables us to interpret H as a certain 54

subset of smooth functions in L2(X) determined by the 55

eigenvalues and eigenvectors of K. 56

Example 4. As an example of RKHS, let’s define the 57

Green’s function GWm
and the reproducing kernel KWm

on 58

[0, T ]× [0, T ], T ∈ R as 59

GWm(x, y) :=


0 if x ≤ y
1 if x > y and m = 1

(x−y)m−1

(m−1)! otherwise
60

KWm(x, y) :=

∫ T

0

GWm(x, τ)GWm(y, τ)dτ . 61

Given a function f : [0, T ] 7→ R, we use f (i) to denote the
i-th derivative of f . The RKHS associated to KWm

is then

Wm =
{
f : [0, T ] 7→ R

∣∣ f (m) ∈ L2[0, T ],
f (j) absolutely continuous and
f (j)(0) = 0 for j = 0, . . . ,m− 1

}
equipped with the inner product (see e.g. [18]) 62

〈f, g〉Wm
=
〈
f (m), g(m)

〉
2
. 63

The eigenvalues and eigenvectors of KWm can be in 64

general numerically computed (see e.g. Lemma 9 in [25]). 65

In particular, if m equals 1, φW1,j and λW1,j admit the 66

following closed forms [26]: 67

λW1,j = T 2/[(j − 1)π + π/2]2 68

φW1,j(t) =
√

2/T sin [(x/T )(jπ − π/2)] . 69

B. Stochastic modeling of the unknown probability density 70

function 71

We now cast our density estimation problem in a 72

stochastic framework. We start defining a Bayesian prior 73

for the unknown function f . In the sequel, we denote 74

with Ψ a certain deterministic, continuous and nonlinear 75

transformation mapping the space of continuous functions 76

on X into itself. 77

Assumption 5. There exist a positive real number γ and 78

numerable collections of functions {φi(x)} on X and non- 79

negative real numbers {λi} such that 80

• K(x, y) =
∑∞
j=1 λjφj(x)φj(y) is a Mercer kernel of a 81

RKHS H; 82
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Fig. 1. Bayesian network describing the nonlinear stochastic model for
density estimation.

• the function f is a random field of the form1

f(x) =
Ψ(g)∫

X
Ψ(g)dx

(1)2

where

g(x) =

∞∑
j=1

ajφj(x)

and {aj} are independent Gaussian random variables,3

being the variance of aj equal to λj/γ.4

A graphical description of our model is depicted in5

Fig. 1 by using the formalism of Bayesian networks6

(see [27]). Here, random fields/vectors are represented by7

nodes, stochastic relationships by arrows and deterministic8

relationships by dashed arrows. One can thus note that in our9

framework also the regularization parameter is modeled as10

random variable. In particular, following a standard statistical11

choice (see e.g. [27]) we specify the entire network by12

assigning to γ a Gamma distribution Γ(α, β) of mean α/β.13

IV. RELATIONSHIP WITH TIKHONOV REGULARIZATION14

THEORY15

A. Connection with Tikhonov nonlinear regularization16

In this sub-section we derive a connection between
the probabilistic model of Fig. 1 and Tikhonov nonlinear
regularization. Given a function g ∈ H , where g =∑∞
j=1 ajφj(x), let aN the vector containing the first N

components of {aj}. We define as gNa the following finite-
dimensional approximation of g,

gNa (x) :=

N∑
j=1

aNj φj(x) ,

where x ∈ X . We define the following prior distribution for
aN :

paN (aN )=
1

(2πγ−1)
N/2√

λ1 · · ·λN
exp

−γ
2

N∑
j=1

(aNj )2/(λj)


=

1

(2πγ−1)
N/2√

λ1 · · ·λN
exp

(
−γ

2
‖gNa (x)‖2H

)
.

Let Ψ(gNa )yj be the function Ψ(gNa ) evaluated at yj . Then
the conditional density for y given aN and γ is

py|aN ,γ
(
y|aN , γ

)
=

∏n
j=1 Ψ(gNa )yj∫
X

Ψ(gNa )dx
.

The corresponding negative log of the likelihood for a given
y ∈ Rn and aN is

lN (y, aN | γ) =
1

2

N∑
j=1

log

(
2πλj
γ

)
−

n∑
j=1

log
(
Ψ(gNa )yj

)
+ log

(∫
X

Ψ(gNa )dx

)
+ γ
‖gNa ‖2H

2
.

We point out that H , being a RKHS, is a subset of the space
of continuous functions and convergence in the topology
induced by ‖ · ‖H implies uniform convergence, see e.g. [7].
Then we easily have that

lN
(
y, gNa | γ

)
− 1

2

N∑
j=1

log

(
2πλj
γ

)
N→∞−−−−→ l(y, g | γ)

where

l (y, g | γ) := −
n∑
j=1

log
(
Ψ(g)yj

)
+γ
‖g‖2H

2
+ log

(∫
X

Ψ(g)dx

)
.

Given the model of Fig. 1, we can interpret 17

ĝ = arg min
g∈H

l (y, g | γ) (2) 18

as the maximum a posteriori (MAP) estimate of g given 19

y and γ. MAP estimate is thus provided by a Tikhonov 20

nonlinear variational problem which contains two contrasting 21

terms. The first one, equal to −
∑n
j=1 log(Ψ(g)yj ), takes into 22

account the experimental evidence, the second one, equal 23

to ‖g‖2H , the a priori information about the regularity of 24

the solution. The trade-off between these two components 25

is then established by the regularization parameter γ. 26

Finally, a third term is also present in the estimator, equal 27

to log(
∫
X

Ψ(g)dx), which is to enforce the nonnegative 28

and unitary constraint on the unknown probability density 29

function. 30

B. Connection with other density estimation approaches 31

We notice that Estimator (2) has already been proposed in 32

the literature with different choices of Ψ. For instance, [28] 33

introduces a penalty on the second derivative of the squared 34

root of the function of interest. Under our framework, this 35

corresponds to define Ψ : f 7→ f (2), embedding the problem 36

in W2. [9] instead assumes Ψ to be exponential, i.e. Ψ : f 7→ 37

ef , and proposes efficient iterative algorithms to implement 38

this model (asymptotic properties are described in [29]). 39

However, rigorous statistical criteria to determine γ in (2) 40

have not been so far proposed. In addition it is worth pointing 41

out that, even if γ were known, the MAP estimate of g given 42

y and γ is in general less robust than its a posteriori expected 43

value. In the next Section we then show how to compute 44

the minimum variance estimates of f and γ via a MCMC 45

approach. 46

We finally remark that density estimation through infinite 47

Gaussian mixtures [30] correspond to MCMC approaches 48

using more vague priors: in (2) designers can directly 49



encode assumptions on the regularity of the density through1

appropriate K(·, ·)’s, while in infinite Gaussian mixtures this2

design opportunity is missing.3

V. NUMERICAL ALGORITHMS4

Recovering minimum variance estimates and confidence5

intervals from the a posteriori probability density function of6

f and γ graphically described in Fig. 1 requires the solution7

of analytically intractable integrals. Here, we derive a novel8

MCMC algorithm for density estimation which circumvents9

this difficulty. We start providing a brief overview on the10

Metropolis-Hastings algorithm [20] on which our numerical11

procedure relies on.12

A. A brief overview on the MCMC framework13

The goal of a MCMC algorithm is to simulate realizations
from a certain posterior distribution so that empirical
estimates for any statistics of interest can be determined.
A MCMC procedure thus consists of two steps. Firstly,
a Markov process with limiting quantities that follow the
invariant distribution of interest, in our case the a posteriori
probability density function of f and γ, is designed. This
first step is used to recover the target distribution of interest
in sampled form. Secondly, a Monte Carlo integration
is done to obtain the integrals of interest. The common
mechanism by which the first step can be performed is the
Metropolis/Hastings algorithm. A variant of this procedure,
named the single-component Metropolis/Hastings algorithm,
will be in particular used in this paper. To describe it,
let π(θ) the target density, being θ a finite-dimensional
vector containing the parameters of interest. We denote with
qi (Zt+1|Zt) a proposal density from which a candidate
value Zt+1 is drawn when the current state of the chain
is Zt. The scheme suggests to divide Z into h portions
of desired dimension, then specifying h proposal density
functions qi(·|·) with i = 1, 2, . . . , h. Every iteration of the
algorithm is composed by h distinct phases where Metropolis
Hastings updates are employed to explore the parameter
space by proposing moves which are subsequently either
accepted or rejected. To be specific, at step i of iteration
t+1 the i-th portion of Z, denoted with Zt+1.i, is drawn by
the kernel qi(Zt+1.i|Zt.i, Zt.−i), where

Zt.−i := {Zt+1.1, . . . , Zt+1.i−1, Zt.i+1, . . . , Zt.h} .

In practice, the first i − 1 components of Zt.−i come from
the first i− 1 steps computed at instant t+ 1. The candidate
is then accepted with probability

δ(Zt.−i, Zt.i, Zt+1.i) =

min

(
1,
π(Zt+1.i|Zt.−i)qi(Zt.i|Zt+1.i, Zt.−i)

π(Zt.i|Zt.−i)qi(Zt+1.i|Zt.i, Zt.−i)

)
.

If the proposal is rejected then the chain remains in14

the current state. This scheme guarantees, under mild15

additional conditions, π to be the limiting distribution of the16

Markov chain generated (see e.g. [21]). This virtually holds17

independently of the particular proposal densities {qi(·|·)}18

employed. Even if their choice is essentially arbitrary, it has19

however a crucial influence on the rate of convergence of 20

the algorithm. In other words, it can be often problematic to 21

design an efficient MCMC scheme which obtains an accurate 22

reconstruction (in sampled form) of π after a reasonable 23

number of iterations. 24

B. MCMC algorithm for density estimation 25

Following [31], we define a MCMC procedure which 26

relies upon a representation of g in terms of a finite subset 27

of eigenvectors {φj}. To be specific, we assume 28

g(x) =

N∑
j=1

aNj φj(x) (3) 29

where N depends on the specific problem and has to 30

be chosen large enough so as to provide an accurate 31

approximation of the original infinite-dimensional model. 32

We then block the parameter space into two groups, i.e.
γ and aN . As concerns the updating of γ, let Λ the N ×N
diagonal matrix with (j, j)-th entry equal to λj . After some
computations we obtain

pγ|aN,y
(
γ | aN, y

)
= Γ

(
N

2
+ α ,

1

2

(
aN
)′

Λ−1
(
aN
)

+ β

)
.

We then choose as the proposal density for γ its conditional 33

distribution given aN and y, thus defining a Gibbs sampler 34

update, see [21]. 35

As concerns aN , the same kind of strategy can no more 36

be exploited, since the corresponding posterior does not take 37

a standard form. We then propose a move in which these 38

parameters are updated by sampling a value in a symmetric 39

interval around the current position, in accordance with a 40

Gaussian distribution with covariance matrix Σ. In particular, 41

we adapt the proposal scales as follows. We begin a pilot- 42

tuning run from some arbitrary values γ0 and aN0 . We 43

preliminarily set Σ to a matrix proportional to γ−10 Λ, with the 44

scale factor chosen in order to make the acceptance ratio for 45

aN to be around 0.2–0.4. This preliminary stage is used in 46

rder to let the algorithm approximately learn the a posteriori 47

correlation of the components of aN given y. Then, after 48

a certain number of iterations, we set once and for all Σ 49

as proportional to the covariance matrix of the generated 50

samples of aN , still choosing a scale factor which ensures 51

an acceptance ratio of the proposed moves around 0.3 [21]. 52

We summarize the MCMC procedure by means of the 53

following Algorithm 1. The symbol N (µ,Σ) is therein used 54

to denote a Gaussian probability density function having 55

mean µ and covariance matrix Σ. 56

Remark 6. Ψ, as well as the RKHS H , should be chosen 57

in accordance with available information on f . Moreover, 58

as concerns the transformation Ψ(g)/
∫

Ψ(g)dx, it appears 59

important to define it as injective. Otherwise, the posterior 60

probability of aN given y could turn out multimodal with 61

many peaks (or also improper), thus making difficult the 62

convergence of the generated Markov chain. 63



Algorithm 1
1: (initialization) set (γ0, a

N
0 ) and k = 1

2: for k = 1, 2, . . . do
3: sample γk from

Γ

(
N

2
+ α,

1

2

(
aNk−1

)′
Λ−1

(
aNk−1

)
+ β

)
4: sample s from N

(
aNk−1,Σ

)
5: accept s with probability

δ
(
s, aNk−1, γk

)
= min

(
1,

ρ(s, γk)

ρ
(
aNk−1, γk

))
where

ρ
(
aN , γ

)
:=

∏n
i=1 Ψ(gNa )yi∫
X

Ψ(gNa )dx
exp

(
−γ

2
(aN )′Λ−1(aN )

)
6: if s is accepted then set aNk = s, otherwise aNk =
aNk−1

VI. NUMERICAL EXPERIMENTS1

We present two set of univariate simulations on [0, 1]2

to examine the relative effectiveness of the proposed3

methodology. Before introducing the examples in detail, it is4

worth pointing out that in every case study the binary control5

of Raftery and Lewis has been used in order to assess the6

convergence of the generated Markov chains, see [32]. In7

particular we have always required to estimate the quantiles8

0.025, 0.25, 0.5, 0.75, 0.975 with precision respectively9

0.005, 0.01, 0.01, 0.01, 0.005, and with probability 0.95.10

A. Bayesian learning of an exponential probability density11

function12

We start considering the reconstruction of an exponential13

density, with mean 0.15, from 100 samples independently14

drawn from it. Data are displayed by means of a histogram15

in Fig. 2 (top panel).16

In (1) we include information about the smoothness of17

the unknown function f by setting Ψ to an exponential18

transform and assuming that g belongs to W1, with support19

on1 [0, 1]. We recall that this exponential transformation20

is the nonparametric counterpart of the classic log-normal21

choice in parametric frameworks.22

As concerns γ, α and β are chosen so as to define23

a poorly informative prior on this hyper-parameter. After24

setting N to 100 in (3), the model in Fig. 1 has been25

solved by reconstructing the joint posterior density of γ26

and f via a Monte Carlo run where 4000 samples were27

generated. In Fig. 3 (top panel) the (unnormalized) posterior28

of γ is depicted. In Fig. 4 (top panel) we report the29

minimum variance estimate of f (solid line), together with its30

95% confidence interval (shaded area) and the true function31

1It is easy to assess that this kind of choice makes Ψ(g)/
∫

Ψ(g)dx
injective. This in particular holds thanks to the side condition at 0 present
in the definition of W1.
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Fig. 2. Reconstruction of an exponential density function. Top: histogram
of 100 samples independently drawn from the unknown density. Bottom:
histogram of 500 samples independently drawn from the unknown density.
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Fig. 3. Reconstruction of an exponential density function. Top: posterior
of γ obtained (in sampled form) by MCMC using the training set of 100
samples. Bottom: posterior of γ obtained (in sampled form) by MCMC
using the training set of 500 samples.

(dashed line). Even though the training set size is small, the 32

density estimate is somewhat close to the true one. It thus 33

appears that a suitable amount of regularization has been 34

introduced by the nonlinear estimator. 35

We then repeated the entire estimation process by adding 36

to the training set other 400 samples independently drawn 37

from the exponential density. Data are displayed by means of 38

a histogram in Fig. 2 (bottom panel). After setting N to 100 39

in (3), a Monte Carlo run of 3000 samples were generated. 40

The posterior of γ (in sampled form) is visible in Fig. 3 41

(bottom panel). Results regarding the estimate of f are then 42
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Fig. 4. Reconstruction of an exponential density function. Top: minimum
variance estimate (continuous line) with 95% confidence interval (shaded
area) and true density (dashed line) using the training set of 100 samples.
Bottom: minimum variance estimate (continuous line) with 95% confidence
interval (shaded area) and true density (dashed line) using the training set
of 500 samples.

reported in Fig. 4 (bottom panel), with the same rationale1

followed in the top panel of the same figure. One can note2

that the minimum variance estimate is very close to the truth.3

Moreover, comparing the confidence intervals depicted in the4

first and top panel, one can appreciate how the uncertainty5

related to the estimate has been reduced by augmenting the6

size of the data set. This illustrates the capability of the7

proposed approach in clearly making the investigator assess8

the amount of information that different training sets provide.9

B. Bayesian learning of a mixture of Gaussians10

As a second example, we consider a benchmark problem
proposed in [9] which consists of reconstructing a density
on [0, 1] proportional to

1

3
e−50(x−0.3)

2

+
2

3
e−50(x−0.7)

2

.

This function is depicted in Fig. 5 (dashed line), and it11

can be noticed that it virtually corresponds to a mixture of12

Gaussians.13

In (1) we include information about the smoothness of14

the unknown function f by setting Ψ as in Sec. VI-A and15

assuming that g belongs to W2, with support on [0, 1].16

As concerns α and β, they are chosen so as to define a17

poorly informative prior on γ. After setting N to 100 in18

(3), we consider 300 replicates of this problem. For each19

of these 300 simulations we generate a new training set of20

200 samples and then use our MCMC scheme to obtain the21

minimum variance estimate of f , in accordance with the22

model depicted in Fig. 1. In Fig. 5 we report the mean of23
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Fig. 5. Reconstruction of a mixture of Gaussians through Monte Carlo
simulations: estimates mean (continuous line), with 95% bands of variability
(shaded area), and true density (dashed line).

the 300 estimates (continuous line) together with the 95% 24

variability band (shaded area), i.e. the interval between the 25

2.5 and 97.5 percentiles of the Monte Carlo distribution of 26

the density estimates at each point of their support. Even 27

though the size of the data set is really small, one can 28

note that the mean is quite close to the true profile. This is 29

particularly evident near the second peak since, on average, 30

the most part of the samples is generated from it at every of 31

the 300 Monte Carlo runs. Moreover, 95% variability bands 32

show that the variance of the error is not high. 33

VII. CONCLUSIONS 34

The choice of the regularization parameter is a crucial 35

issue in learning theory and, more in general, when dealing 36

with ill-posed problems [33], [18], [34], [7]. In particular, 37

when reconstructing a probability density function, its 38

determination presents formidable difficulties due to the 39

nonlinear nature of the problem. In this paper, we have 40

proposed a new technique which tackles this difficulty by 41

casting the density estimation problem within a Bayesian 42

framework. An MCMC approach is then used to implement 43

the resulting stochastic model. 44

The power of our method consists in providing estimates 45

that take into account all the sources of uncertainty present 46

in the problem. In particular, the proposed algorithm is able 47

to return minimum variance estimates of both the unknown 48

density and the regularization parameter. In addition, our 49

scheme can associate to the estimate a confidence interval, 50

thus allowing the investigator to assess how informative the 51

training set is. 52

In future work, we will test the methodology to reconstruct 53

multivariate densities, also improving its computational 54

efficiency. 55

REFERENCES 56

[1] A. Gersho and R. M. Gray, Vector Quantization and Signal 57

Compression. Boston: Kluwer Academic Publishers, 1992. 58

[2] A. S. Weigend and A. N. Srivastava, “Predicting conditional 59

probability distributions: a connectionist approach,” International 60

Journal of Neural Systems, vol. 6, no. 2, pp. 109 – 118, June 1995.1



[3] S. Fiori, “Nonsymmetric pdf estimation by artificial neurons:2

Application to statistical characterization of reinforced composites,”3

IEEE Transactions on Neural Networks, vol. 14, no. 4, pp. 959 –4

962, July 2003.5

[4] F. Liang, “Continuous contour monte carlo for marginal density6

estimation with an application to spatial statistical model,” Journal7

of Computational and Graphical Statistics, vol. 16, no. 3, pp. 608 –8

632, September 2007.9

[5] B. Silverman, “On the estimation of a probability density function10

by the maximum penalized likelihood method,” Annals of Statistics,11

vol. 10, pp. 795 – 810, 1982.12

[6] V. N. Vapnik, Statistical learning theory. New York: Wiley, 1998.13

[7] F. Cucker and S. Smale, “On the mathematical foundations of14

learning,” Bulletin of the American mathematical society, vol. 39, pp.15

1–49, 2001.16

[8] V. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, “On the method17

of logarithmic cumulants for parametric probability density function18

estimation,” INRIA Sophia Antipolis, Tech. Rep. RR-7666, 2011.19

[9] C. Gu, “Smoothing spline density estimation: A dimensionless20

automatic algorithm,” Journal of the American Statistical Association,21

vol. 88, pp. 495 – 504, June 1993.22

[10] A. Komárek and E. Lesaffre, “Generalized linear mixed model23

with a penalized gaussian mixture as a random effects distribution,”24

Computational Statistics & Data Analysis, vol. 52, no. 7, pp. 3441 –25

3458, March 2008.26

[11] C. Schellhase and G. Kauermann, “Density estimation and comparison27

with a penalized mixture approach,” Computational Statistics, vol. –,28

pp. 1 – 21, 2011.29

[12] G. Wahba, “Histosplines with knots which are order statistics,”30

Journal of the Royal Statistical Association, vol. 38, pp. 140 – 151,31

1976.32

[13] E. Parzen, “On the estimation of a probability density function33

and mode,” The Annals of Mathematical Statistics, vol. 33, pp.34

1065–1076, 1962.35

[14] E. López-Rubio and J. M. O. de Lazcano-Lobato, “Soft clustering36

for nonparametric probability density function estimation,” Pattern37

Recognition Letters, vol. 29, pp. 2085 – 2091, 2008.38

[15] C. Archambeau and M. Verleysen, “Fully nonparametric probability39

density function estimation with finite gaussian mixture models,” in40

International Conference on Advances in Pattern Recognition, 2003.41

[16] M. Girolami, “Orthogonal series density estimation and the kernel42

eigenvalue problem,” Neural Computation, vol. 14, pp. 669 – 688,43

2002.44

[17] Y. Yang, “Penalized semiparametric density estimation,” Statistics45

and Computing, vol. 19, no. 4, pp. 355 – 366, 2009.46

[18] G. Wahba, Spline models for observational data. SIAM, Philadelphia,47

1990.48

[19] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems.49

Washington, D.C.: Winston/Wiley, 1977.50

[20] W. Hastings, “Monte Carlo sampling methods using Markov chain51

and their applications,” Biometrika, vol. 57, pp. 97–109, 1970.52

[21] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov chain53

Monte Carlo in Practice. London: Chapman and Hall, 1996.54

[22] J. Mercer, “Functions of positive and negative type and their55

connection with the theory of integral eqations,” Phil. Trans. Roy.56

Soc. London Ser., vol. 209, pp. 415–446, 1909.57

[23] R. Courant and D. Hilbert, Methods of mathematical physics.58

Interscience, 1962.59

[24] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the60

American Mathematical Society, vol. 68, pp. 337 – 404, 1950.61

[25] G. De Nicolao and G. Ferrari-Trecate, “Consistent identification of62

NARX models via regularization networks,” IEEE Transactions on63

Automatic Control, vol. 44, pp. 2045–2049, 1999.64

[26] A. M. Yaglom, Correlation theory of stationary and related random65

functions. Springer-Verlag, New York, 1987, vol. 1.66

[27] P. Magni, R. Bellazzi, and G. De Nicolao, “Bayesian function67

learning using MCMC methods,” IEEE Transactions on Pattern68

Analysis and Machine Intelligence, vol. 20, pp. 1219–1331, 1998.69

[28] L. Liu, M. Levine, and Y. Zhu, “A functional em algorithm for70

mixing density estimation via nonparametric penalized likelihood71

maximization,” Journal of Computational and Graphical Statistics,72

vol. 18, no. 2, pp. 481 – 504, 2009.73

[29] C. Gu and C. Qiu, “Smoothing spline density estimation: theory,”74

Annals of Statistics, vol. 21, pp. 227–234, 1993. 75

[30] C. E. Rasmussen, “The infinite Gaussian mixture model.” in Advances 76

in Neural Information Processing Systems (NIPS), vol. 12, 2000, pp. 77

554–560. 78

[31] G. Pillonetto and B. Bell., “Bayes and empirical Bayes semi- 79

blind deconvolution using eigenfunctions of a prior covariance,” 80

Automatica, vol. 43, no. 10, pp. 1698–1712, 2007. 81

[32] A. E. Raftery and S. M. Lewis, Implementing MCMC. Markov 82

Chain Monte Carlo in Practice. W.R. Gilks, S.Richardson, and D.J. 83

Spiegelhalter, eds. London: Chapman and Hall, 1996, pp. 115–130. 84

[33] J. A. Rice, “Choice of smoothing parameter in deconvolution 85

problems,” Contemporary Mathematics, vol. 59, pp. 137–151, 1986. 86

[34] P. Hansen, “Analysis of discrete ill-posed problems by means of the 87

L-curve,” SIAM Review, vol. 34, pp. 561 – 580, 1992. 88


