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Abstract— We consider the problem of estimating the oc-
cupancy level in buildings using indirect information such as
CO2 concentrations and ventilation levels. We assume that one
of the rooms is temporarily equipped with a device measuring
the occupancy. Using the collected data, we identify a gray-box
model whose parameters carry information about the structural
characteristics of the room. Exploiting the knowledge of the
same type of structural characteristics of the other rooms in the
building, we adjust the gray-box model to capture the CO2 dy-
namics of the other rooms. The occupancy estimators are then
designed using a regularized deconvolution approach which
aims at estimating the occupancy pattern that best explains
the observed CO2 dynamics. We evaluate the proposed scheme
through extensive simulation using a commercial software tool,
IDA-ICE, for dynamic building simulation.

Index Terms— Occupancy estimation, Maximum Likelihood,
CO2 dynamics, inference, building automation

I. INTRODUCTION

The estimation of occupancy levels in buildings has impor-
tant implications in efficient control of Heating, Venting and
Air Conditioning (HVAC) systems and diagnostics [1], [2],
[3], [4], [5], [6], [7]. Instrumenting buildings with dedicated
hardware such as camera systems may raise privacy concerns
and be economically disadvantageous, in particular when this
requires retrofitting old structures. On the other hand, there
is an increasing interest in understanding the effectiveness
of estimating occupancy using non-dedicated information
sources in buildings, such as CO2 concentration and air inlet
actuation levels.

There are two main strategies to estimate occupancy in
buildings. The first utilizes direct occupancy measurements
collected by people-counting devices (see [8], [9] for a
survey). The second strategy exploits non-dedicated sensor
and devices. The typical approach is to design occupancy es-
timators by inverting the CO2 dynamics. The model relating
the CO2 concentration with occupancy can be derived either
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using physics-based concepts (e.g., mass-balance equations)
or by employing data-based modeling techniques. As for the
physics-based CO2 models, assuming well-mixed air in the
room, authors in [10] derived a bilinear model which has
similarities with the model presented in this paper. Still as-
suming well-mixed air, [11], [12] and [5] make use of mass-
balance equations and linear models for the CO2 dynamics.
More detailed models are considered in [13]. Regarding data-
based modeling techniques, [14] uses methods of moments,
while [15] proposes both linear parametric and nonpara-
metric identified models, from which estimators based on
deconvolution are designed. A novel approach is proposed
in [16], where, using blind system identification techniques
as in [17], no training sets including occupancy measure-
ments are required. Other types of estimators use black
box models identified using, e.g., neural networks or hidden
Markov models, and potentially including several sources
of information (e.g., temperature, humidity, concentrations,
door statuses and light status, sound and motion, electricity
consumption patterns) [18], [19], [20], [21], [22], [23], [24],
[25]. This literature focuses on occupancy estimation in
single rooms. Besides a few studies dealing with modeling
and estimation of occupancy movements across buildings
(see e.g., [26], [19]), the multi-room case has not received
as much attention as the single-room case.

In this paper, we take an important step towards the
extension of single-room occupancy estimators to the multi-
room case. Our fundamental question is whether the in-
formation on the CO2 dynamics gathered in one room
can be exploited to design occupancy estimators for other
rooms of the same building. To answer such a question, we
assume that one room of the building is temporarily equipped
with an occupancy measurement device. We use the data
collected by this device, together with CO2 concentration
and ventilation data, to identify a nonlinear gray-box model
via Maximum Likelihood (ML) [27]. The structure of the
gray-box model is derived from first principles [28] and
it permits defining a one-to-one correspondence between
the model parameter vector and the physical parameters
characterizing the room (i.e., room volume and size of
the ventilation system). Exploiting this correspondence, we
adapt the gray-box model to the characteristics of the other
rooms, and we design an occupancy estimation based on
regularized environmental signal deconvolution, similarly to
the strategy proposed in [15]. The role of regularization here
is to promote piecewise constant occupancy patterns.

We evaluate the proposed estimation scheme on a simu-



lated environment generated using the commercial software
IDA-ICE [29]. The simulated environment models a building
on the KTH campus. The generated data are validated by
comparison with a dataset available on the [30].

The paper is structured as follows. In Section II, we
derive and identify the physics-based gray-box model which
models the CO2 dynamics. In Section III, we introduce
the occupancy estimator based on the identified model.
In Section IV we present the problem of extending the
occupancy estimator to the multi-room case. Experiments are
reported in Section V. Some conclusions end the paper.

II. MODELING AND IDENTIFICATION OF THE CO2

DYNAMICS

A. A physics-based model

The CO2 concentration of room j, denoted by cj(t), can be
modeled from mass-conservation considerations, assuming
well-mixed air (see [28]):

vj
dcj(t)

dt
=
(
Q̇vent,sup
j + Q̇leak,in

j

)
c

−
(
Q̇vent,exh
j + Q̇leak,out

j

)
cj(t) + g oj(t). (1)

Here, vj is the volume of the room, and c is the outdoor
air CO2 concentration, which we assume constant and equal
to 420 ppm; Q̇vent,sup

j and Q̇vent,exh
j represent the supply

and exhaust mechanical ventilation rates and Q̇leak,in
j and

Q̇leak,in
j the inflow and outflow air leakages through doors

and windows. The term goj(t) models the occupants CO2

generation in the room, where g is the CO2 generation rate
per person and oj(t) is the number of occupants at time t.
In the case of balanced ventilation it is reasonable to assume
that Q̇vent,sup

j ≈ Q̇vent
j ≈ Q̇vent,exh

j and that Q̇leak,in
j ≈ Q̇leak ≈

Q̇leak,out
j . Equation (1) can then be simplified to

dcj(t)

dt
=
Q̇vent
j

vj

(
c− cj(t)

)
+
Q̇leak

vj

(
c− cj(t)

)
+

g

vj
oj(t).

(2)

In the ventilation system considered in this work, there is a
constant ventilation flow in the zones, which can be increased
if the indoor CO2 concentration is above a certain threshold.
Under these assumptions, (2) can be rewritten as

dcj(t)

dt
=
Q̇vent,min
j + (Q̇vent,max

j − Q̇vent,min
j )uj(t)

vj

(
c− cj(t)

)
+
Q̇leak

vj

(
c− cj(t)

)
+

g

vj
oj(t). (3)

Since Q̇vent,min
j does not depend on the ventilation control

signal uj(t), we rewrite (3) as

dcj(t)

dt
=
Q̇u
juj(t)

vj

(
c− cj(t)

)
+
Q̇c
j

vj

(
c− cj(t)

)
+

g

vj
oj(t),

(4)

with Q̇u
j = Q̇vent,max

j − Q̇vent,min
j and Q̇c

j = Q̇vent,min
j + Q̇leak.

We discretize the continuous-time model (4) using the
backward Euler discretization1, so we obtain

cj(k)− cj(k − 1)

T
=

(
Q̇u
juj(k) + Q̇c

j

)
vj

(
c−cj(k)

)
+
g

vj
oj(k),

(5)
where T is the sampling time. We define cj(k) := cj(k)− c
and the parameter vector θTj :=

[
θ′j θ

′′
j θ
′′′
j

]
, where

θ′j :=
vj

vj + TQ̇u
j

θ′′j :=
Tg

vj + TQ̇u
j

θ′′′j :=
TQ̇c

j

vj + TQ̇u
j

. (6)

We assume that the measurements of cj(k) are corrupted
by additive noise. Then, the measured CO2 concentration,
denoted by yj(k), can be expressed through the measurement
model yj(k) = cj(k) + ej(k), where ej(k) is the noise,
assumed white and Gaussian. The overall model for the CO2

dynamics can be rewritten as the nonlinear Output Error (OE)
system cj(k) =

θ′j
1 + θ′′′j uj(k)

cj(k − 1) +
θ′′j

1 + θ′′′j uj(k)
oj(k)

yj(k) = cj(k) + ej(k).
(7)

B. Identification of the gray-box model

In this section we describe a procedure for identifying the
parameter vector θj characterizing the model (7). Here, we
assume that we have collected the dataset of information
from room j

Dj := {yj(k), uj(k), oj(k)}k∈Kj , (8)

containing recorded occupancy levels plus environmental
information from the building supervisory control and data
acquisition (SCADA) system for a set of time indexes Kj ,

Let us introduce the auxiliary notation

aj(k) :=
θ′j

1 + θ′′′j uj(k)
, bj(k) :=

θ′′j
1 + θ′′′j uj(k)

, (9)

so that (7) becomes

cj(k) = aj(k)cj(k − 1) + bj(k)oj(k). (10)

Expanding recursively (10) back in time, and defining the
quantities

c̃j(k) := cj(k)− cj(0)

k−1∏
τ=0

aj(k − τ), (11)

Bj(k, k − h) := bj(k − h)

h−1∏
τ=0

aj(k − τ) (12)

1This choice is motivated by the fact that backward Euler discretization
led to better identification and estimation performance than the forward
Euler discretization.



(with the convention that
∏−1
τ=0 ? = 1 for every possible ?),

it follows thatc̃j(1)
...

c̃j(k)

 =

Bj(1, 1) 0
...

. . .
Bj(k, 1) · · · Bj(k, k)


oj(1)

...
oj(k)

 . (13)

Given uj(1), . . . , uj(k), oj(1), . . . , oj(k) and our Gaussian
assumptions on the noise ej(k) in (7), we have that

ĉj (k;θj) := yj(0)

k−1∏
τ=0

aj(k − τ)

+
[
Bj(k, 1) · · · Bj(k, k)

] oj(1)
...

oj(k)

 , (14)

is the best estimator of cj(k) for the parameter guess θj . This
estimator can then be used for defining the ML estimator for
the parameters θj given the dataset Dj . The estimate θ̂j is
obtained solving

θ̂j := arg min
θ̃j∈R3

∑
k∈Kj

(
yj(k)− ĉj

(
k; θ̃j

))2
. (15)

Even if problem (15) is nonlinear, it involves only three
decision variables and can be effciently solved using standard
interior point methods [31].

III. ESTIMATING OCCUPANCY LEVELS BY REGULARIZED
DECONVOLUTION

In this section we revise the occupancy estimation ap-
proach proposed in [15], with some modifications to adjust
it to the nonlinear gray-box model (7). We assume that we
have the estimate θ̂j of the parameters of room j, and that,
for each time instant k, we have access to yj(k), yj(k − 1)
and uj(k), but not to oj(k).

From the assumption of Gaussianity of the measurement
noise ej(k) in (7), the best unbiased estimator of oj(k)
corresponds to a Least Squares (LS) estimator. However,
since we know that candidate occupancy patterns are piece-
wise constant, more effective estimators can be obtained
by applying regularized estimators. Let us introduce the
following matrix and vector notation

ỹj(k) := yj(k)− yj(0)

k−1∏
τ=0

aj(k − τ), (16)

ỹj :=

ỹj(1)
...

ỹj(k)

, oj :=

oj(1)
...

oj(k)

, Bj :=

[
Bj(h, τ)

]
.

Furthermore, we introduce the discrete derivative of oj(k) as

∆oj(τ) := oj(τ)− oj(τ − 1), τ = 1, . . . , k − 1,

∆oj :=
[
∆oj(1), . . . ,∆oj(k − 1)

]

In [15], the following estimator for occupancy was intro-
duced:

ôj =

⌊
arg min

õj∈Rk+
‖ỹj −Bj õj‖22 + λj

∥∥∆õj
∥∥
1

⌉
, (17)

where b·e denotes the vector-wise rounding operator, which
is used to obtain integer solutions. This estimator is com-
posed of a LS-type part, which favors adherence to data,
and a `1 (component) depending on the derivative of the
unknown occupancy. This latter component promotes piece-
wise constant solution patterns. The parameter λj allows a
trade-off between the two components. We refer to [15] for
further details.

Problem (17) is usually called fused-lasso. More elab-
orated theoretical analysis on the performance of these
estimators can be found in [32] and [33].

It is straightforward to modify (17) to obtain an online
estimator which considers only a fixed-length (say, N ) data
window of the past. At each time instant, the estimator is
run by constructing the vectors ỹj and oj using the latest
N data of the past. The length N is chosen so that the
computational complexity is low enough to allow a real-time
solution of (17) and so that the discarded information does
not influence significantly the outcomes of the estimator. A
reasonable choice for tuning λj in (17) is to use the value λ̂j
that leads to the best estimation performance on the dataset
used for training the parameters θ̂j in Section II-B. The
performance index can be chosen as

‖oj − ôj(λj)‖2 ,

where oj is constructed from the dataset (8) and ôj(λj) is the
occupancy pattern obtained using λj in the estimator (17).

IV. FROM SINGLE-ROOM TO MULTI-ROOMS ESTIMATORS

This section is dedicated to the extension of the esti-
mator (17) to a generic room in a building that is not
instrumented with occupancy sensors, by exploiting the in-
formation on the CO2 dynamics obtained in one room of the
same building which is instrumented with occupancy sensors.
We assume that the sampling time T and the volume vj are
known for all the rooms of interest.

Assume that every single room in a generic building
is instrumented with sensors measuring CO2 and HVAC
actuation levels (which are generally available in standard
HVAC systems). We also assume that only one of the rooms,
denoted by j = 0, is instrumented with occupancy sensors
for a short period. For this room the dataset D0 defined
in (8) is available and thus it is possible to identify the CO2

dynamic of the room by estimating the unknown parameters
θ0 through (15) and estimate the occupancy levels invoking
estimator (17).

However, for the rooms without occupancy measurements,
the estimator (15) cannot be used to find the CO2 dynamic
due to the lack of training set. We call these rooms untrained
rooms. Define I as the set of rooms without occupancy
measurements or untrained rooms. The question is now how
to extend the estimator (17) to these rooms.



To implement the estimator (17) one needs to know the
CO2 dynamics of the room, i.e., (7), or alternatively, θj
and the regularization parameter λj . Finding the variables
θj for a room, in turn, requires either a training set Dj
or the knowledge of Q̇c

j , Q̇
u
j , g since there is a one-to-one

correspondence between θj and Q̇c
j , Q̇

u
j , g. Since for the

rooms j ∈ I the set Dj is not available, we need to infer
the triplet

(
Q̇c
j , Q̇

u
j , g
)

and the regularization parameter λj
from the training room and other available information.

A. Estimating
(
Q̇u
j , Q̇

c
j , g
)

We pose the following assumptions

Q̇vent,max
j

Q̇vent,max
0

=
Mj

M0
, ∀j, (18a)

Q̇vent,min
j

Q̇vent,min
0

=
Mj

M0
, ∀j, (18b)

where Mj and M0 are parameters proportional to the venti-
lation inlet area serving the rooms j and the training room,
respectively. According to the assumptions the maximum and
minimum ventilation air flows are proportional to the total
inlet area in a room and the parameters Mj can be obtained
easily by physical inspection of the rooms. However, the
assumptions are made for the purpose of this paper and
might not be always applicable. The main reason is that the
ventilation system design also depends on the room usage.
We will study the implications of these assumptions through
a simulated example.

Due to the assumptions, we can write

Q̇u
j = MjQ̇

u, ∀j, (19a)

Q̇c
j = MjQ̇

c, ∀j, (19b)

where Q̇u and Q̇c are constant values. For (19b) we used
the fact that the value of Q̇leak is negligible compared to
Q̇vent,min
j and thus Q̇c

j ≈ Q̇vent,min
j . Based on (19), we can

readapt the gray-box model of the training room to the
characteristics of the other rooms. It is sufficient to estimate
the triplet

(
Q̇c
j , Q̇

u
j , g
)

for one room to be able to find it for

all rooms. In order to estimate the triplet
(
Q̇c
j , Q̇

u
j , g
)

for
any room j ∈ I, we can thus start from the training room
and estimate the unknown parameters θ̂0 through the single-
room estimator (17). The parameters Q̇c

0, Q̇
u
0 and g can be

obtained invoking (6).
Once the triplet

(
Q̇c

0, Q̇
u
0, g
)

is obtained, one can use the

information on Mj and vj together with (6) to find θ̂j for
all j ∈ I and therefore the CO2 dynamic of the untrained
rooms. It is then straightforward to estimate the occupancy
levels using the estimator (17).

B. Estimating λj
The regularization parameter λj is connected to the usage

of the room as well as its structural characteristics. For
instance, if a crowd size in a room is changing frequently,
then λj should be small (and vice versa). The problem of
generalizing λj to untrained rooms is an open problem and
cannot be answered without additional assumptions on the
usage of the room. In the following we analyze two different
cases, corresponding to two specific hypotheses on the usage
patterns in buildings. Although the suggested strategies are
not immediately applicable in practical situations, they can
produce some basic ideas on the choice of λj .

1) Assuming the same usage pattern for the rooms:
Assume λj = λ for all j; in this case λ should be estimated
by coupling the tuning procedures described in Section III by
finding the best λ̂ in the occupancy estimator for the training
room.

2) Assuming the usage patterns to depend on the size of
the room: One may assume

λj = λvj , (20)

i.e., the usage pattern depends linearly on the size (for
simplicity, the volume, assuming that the ceilings heights
are equal among different rooms). This simple assumption
leads to the strategy

λj
λ0

=
vj
v0
, (21)

where λ0 is obtained by solving the tuning problem in Sec-
tion III for the training room. Once λ0 in (20) has been found,
then generalizing to other untrained rooms is immediate, as
soon as one knows the relative room volumes vj .

V. ASSESSING THE EXTENDED OCCUPANCY ESTIMATORS

We evaluate the effectiveness of our derivations, through
a building simulations tool. The dedicated experiments are
described below.

A. Simulation software environment

Simulations have been performed using IDA-ICE 4.6, a
commercial program for dynamic simulations of energy and
comfort in buildings [29]. The program features equation-
based modeling (NMF-language [34], [35] or Modelica
language [36]) and is equipped with a variable time step
differential-algebraic solver [37].

B. Geometry of the simulated building

The simulated indoor environment in Figure 1 represents
the ground floor of a seven-storey university building in the
KTH main campus in Stockholm. The rooms considered
for our simulations are the labeled ones, and have differ-
ent dimensions and use. The rooms have a Variable Air
Volume (VAV) ventilation strategy where the mechanical
ventilation airflow uj(k) varies depending on the current
CO2 concentration in the room. In all rooms the ventilation
is provided by a central fan active between 8:00 and 18:00.
Room dimensions range from the 40 m2 of a small workshop
(A:231) to the 130 m2 of a lecturing room (A:213), see



Table I. The rooms have different occupancy and uses, which
is reflected in the specific ventilation flows in the rooms;
for instance, the project room (A:235) has more regular
occupancy patterns than the conference hall (B:213), where
periods of zero and high occupancies are alternated.

Fig. 1. Floor plan modeled in IDA-ICE.

Room Room size Min air flow Max air flow
name [m2] [l/(s m2)] [l/(s m2)]
A:235 125 0.6 2.16
A:225 81 0.93 3.34
A:213 130 0.58 2.1
B:213 96 1.05 13.13

TABLE I
ROOM FOOTPRINT, MINIMUM AND MAXIMUM ROOM MECHANICAL

VENTILATION AIR FLOWS PER UNIT AREA. AIR FLOWS PER UNIT AREA

ARE INDICATIVE OF THE NEED FOR VENTILATION AND THE LEVEL OF

ACTIVITY IN THE ROOM.

C. Simulation setup

Room environment simulations were carried out for a
period of two weeks between July 13 and July 26 in 2014.
The climate file was a weather file for Bromma airport in
Stockholm.

Air infiltrates through the windows and doors depending
on the external wind speed and the air leakage area; Table II
gathers the main infiltration parameters used in the simula-
tions. The air tightness of the building is assumed to be 0.5
Air Changes per Hour (ACH) @ 50 Pa.

Room Windows surface Air leakage area
name [m2] [m2]
A:235 10.6 0.015
A:225 2.3 0.008
A:213 3.4 0.014
B:213 0 0.009

TABLE II
TOTAL EXTERNAL WINDOWS AREA AND AIR LEAKAGE AREA IN THE

ROOMS.

Each room has a different profile for the occupants; the
level of activity of the occupants was set to 1.8 Metabolic
Equivalent of Task (MET), corresponding to a light physical
activity, such as typical office working conditions; CO2

emissions per person (parameter g), which is proportional
to the activity, resulted in 15.4 mgCO2

/s, corresponding to
8 · 10−6 m3

CO2
/s.

D. Validation of the data generation mechanism

To assess the accuracy of the IDA-ICE physical model
with respect to the real room dynamics, we compare mea-
sured and simulated CO2 data in Figure 2, under the same
conditions of occupancy and ventilation levels [38]. The real
data are collected from the laboratory room A:225 [30].
The two sets of measured and simulated data show that the
physical model is capable to capture the main CO2 dynamics.
The mismatch between the two curves is attributed to events
whose effect, though minor, is not simple to account for;
examples of such events are doors kept open and non-logged
window openings.
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Fig. 2. Validation of the IDA-ICE model. CO2 levels from room
measurements and from simulation are compared, from [38].

E. Assessing the single-room occupancy estimation algo-
rithm

Here we compare the predictive capabilities of the single-
room model (7) against numerical representations of the
rooms. This assessment is performed to check out whether
the proposed model reproduces the internal and not accessi-
ble CO2 model of IDA-ICE. To this aim we:

1) collect the dataset Dj = {cj(k)uj(k), oj(k)}k∈Kj for
each room from the virtual room built in IDA-ICE;

2) add to cj(k) some artificial white Gaussian noise
(whose variance is estimated from the real data used
in SectionV-D and is equal to 35) and build the dataset

Dj := {yj(k), uj(k), oj(k)}k∈Kj ; (22)

3) identify the model, i.e., estimate the unknown part of
θ through the ML strategy discussed in Section II-
B. This step corresponds to estimate the parameters θ̂
solving (15) and thus to obtain both the CO2 estimator
ŷj

(
k; θ̂

)
through (14) and the occupancy estimator

ôj(k) through (17);



The results for the estimated and measured CO2 for one
day for the room A:225 are plotted in Figure 3, where
it is possible to see that the proposed model is able to
reproduce the CO2 generated by IDA-ICE. Realizations of
the true occupancy and the estimated one for the same
room is depicted in Figure 4. From Figure 4 it can be
seen that the proposed occupancy estimator for a single-
room model can give accurate results in reproducing the true
occupancy. In order to quantitatively evaluate the estimation
capabilities of the single-room estimators, Table III provides
some performance indexes for all rooms2. The Mean Square
Error (MSE) of the estimations is small for all rooms and
the algorithm has good detection of occupied rooms (small
FNs).

08 12 16
0

200

400

600

Time (hour of day)

C
O

2
(p

pm
)

measured
estimated

Fig. 3. Validation of model (7) against IDA-ICE for room A:225.
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Fig. 4. Realizations of the true and estimated occupancy through the
single-room estimator (17) for room A:213.

Room MSE Accuracy FP FN

A:213 0.125 0.496 0.144 0.022
A:225 0.247 0.563 0.280 0.000
A:235 0.109 0.636 0.063 0.011
B:213 0.075 0.750 0.047 0.021

TABLE III
SUMMARY OF THE PERFORMANCE INDEXES OF THE COMPLETE

SINGLE-ROOM ESTIMATORS.

F. Assessing the multi-room model occupancy estimation
algorithm

To evaluate the effectiveness of the proposed multi-room
occupancy estimator, we collect data from IDA-ICE for all

2The performance indices are described in Appendix I.

the rooms mentioned in Table I and we apply the occupancy
estimator algorithm of Section IV.

In Figure 5, we provide the results of the occupancy
estimation in one of the untrained rooms. It can be seen that
the estimator is able to estimate the number of occupiers
with fairly good precision, even though not as well as the
single-room estimator. In order to have a better evaluation
of the estimator, Table IV reports the performance indexes
achieved by the estimator for all of the untrained rooms. The
suggested multi-room estimator tends to have good ability on
detecting occupancy levels in the rooms that are not instru-
mented with occupancy sensors. We noticed that there is a
slight performance degradation in the estimated occupancy
compared to the single-room case. This can be considered
as a consequence of the assumptions made in (18), which do
not hold for this simulation example (see Table I).
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Fig. 5. Realizations of the true and estimated occupancy through the multi-
room estimator for the untrained room A:213 when the model is trained on
room A:225.

Trained Room Untrained Room MSE Accuracy FP FN

A:225 A:235 0.179 0.413 0.364 0.001
A:225 A:213 0.232 0.276 0.399 0.000
A:225 B:213 0.104 0.489 0.062 0.012

TABLE IV
SUMMARY OF THE PERFORMANCE INDEXES OF THE COMPLETE

ESTIMATORS .

VI. CONCLUSIONS

In this paper we have studied the problem of estimating the
occupancy levels in buildings using available environmental
and actuation signals. Our proposed method is centered on
the CO2 dynamics which, starting from first principles, are
modeled using a nonlinear gray-box model. The parameters
of this model are identified on one of the rooms using a
Maximum Likelihood (ML) approach. The resulting model
is utilized to construct an occupancy estimator based on
regularized deconvolution; this estimator is then adapted to
other rooms of the building by exploiting the knowledge of
the characteristics of the rooms and their relation with the
room where the model is first identified. We have built a
simulated environment where we have tested the estimation
scheme, showing the effectiveness of the proposed scheme.



A natural extension of the current work is the application
of blind system identification techniques to the proposed
scheme, so to remove the need of a training phase. More
extensions may consider improving the estimations by using
the knowledge of interconnection of the rooms and the
locations of exits and entrances.
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APPENDIX I
PERFORMANCE INDICES

We report the performance indices that are used in Sec-
tion V for evaluation of the proposed algorithm.

1) The mean square error

MSE (ô) :=
‖ô− o‖22
‖o‖22

, (23)

characterizing the relative estimation errors.
2) The accuracy

Acc (ô) := 1−
‖1 (ô− o)‖1

N
, (24)



reporting how many times the estimates are perfect by
means of the `1 norm of the indicator function

1 (x) :=


1 (x(1))

...
1 (x(N))

1 (x(t)) :=

{
1 if x(t) > 0

0 otherwise.

(25)
3) The false positive / false negative occupancy detection

rates

FP (ô) := β̂(0), FN (ô) := 1− β̂(1), (26)

describing the ability of discriminating the presence /
absence of occupants in terms of false positives (when
the room is estimated to be occupied while it is not)
and false negatives (when the room is estimated to be
empty while it is not) by means of the empirical power
function

β̂(θ) :=
1

|Nθ|
∑
k∈Nθ

1 (ô(k)) , (27)

in its turn based on the definition of the sets

Nθ := {t s.t. 1 (o(k)) = θ} , θ = {0, 1} , (28)

dividing the time indexes in the sets N0, for the k’s for
which the room was not occupied, and N1, for the k’s
for which the room was occupied.

APPENDIX II
NOTATION

parameter description unit

j ∈ N+ room index adim.
t ∈ R time index (continuous) adim.
k ∈ N+ time index (discrete) adim.
oj(k) occupancy at time k in room j adim.
g CO2 generation rate per person

(assumed constant and known)
m3

CO2
/ s

cj(k) CO2 concentration level at time k
in room j

ppm

c CO2 concentration level of the air
injected by the ventilation system
(assumed constant and known)

ppm

cj(k) :=
cj(k)− c

normalized CO2 concentration
level at time k in room j

ppm

yj(k) noisy measurement of cj(k) ppm
uj(k) ∈ [0, 1] actuation levels of the ventilation

system at time k in room j
adim., %

Q̇max
j nominal maximum airflow of the

ventilation system for room j
m3 / s

Q̇min
j nominal minimum airflow of the

ventilation system for room j
m3 / s

Q̇leak leaking air flow (e.g., from win-
dows and doors; assumed constant
for each room)

m3 / s

vj volume of room j m3

I ⊂ N+ set of rooms not instrumented
with occupancy sensors

adim.

TABLE V
SUMMARY OF THE MOST IMPORTANT PARAMETERS.


