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Abstract—We address the problem of estimating the number
of people in a room by means of commonly available information
in standard HVAC systems. We propose to use classical system
identification concepts: first identify linear dynamics relating oc-
cupancy levels, CO2 concentration levels and room temperature
signals, and then formulate the occupancy estimation problem as
a deconvolution one. The estimated occupancy is thus the input
that best trades off explaining the currently measured CO2 levels
and respecting a regularity condition. This condition corresponds
to fused lasso priors (i.e., since rooms occupancy levels are
assumed piecewise constant, we thus promote piecewise constant
solutions by adding an `1 norm-dependent term to the associated
cost function). We propose various estimation algorithms, each
one tailored for different levels of available information (namely,
the availability of measurements of actuation levels of the venting
systems, and of flags signalling when doors open and close). We
also provide conditions under which these estimators provide
correct estimates within a certain probability. We eventually
corroborate the validity of the strategy by means of experiments
on real buildings, and numerically assess how the accuracy of
the estimates improves with the additional information.

Index Terms—Occupancy estimation, System Identification,
Deconvolution, Regularization

Note to Practitioners—Home automation systems benefit from
recognizing automatically the human presence in the built en-
vironment. But having dedicated sensors is costly, and so it
may be preferable to detect occupancies using information that
is already existing in standard buildings, so to do not incur
in additional costs. Here we show how to estimate occupancy
levels starting from measurements of CO2 temperature and
venting levels, and of door openings / closing events, i.e., the
pieces of information that is more often available in modern
buildings. Our aim is to compare how much these pieces of
information are important for occupancy estimation purposes.
Technologically speaking, we build algorithms on top of classical
system identification procedures. Our algorithms nonetheless have
a limitation, that is of requiring pilot data, i.e., measuring real
occupancy patterns for some time (information needed to train
the estimators). Extensions should thus address this limitation,
and remove the necessity of training data. Other applications
of our algorithms include the estimation of occupancy flows in
buildings.
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I. INTRODUCTION

Estimating occupancy levels in rooms is essential for home
automation purposes, e.g., to automate the control of lighting,
thermostats, security locks, home entertainment systems, and
to improve the energetic performance of Heating, Ventilation
and Air Conditioning (HVAC) systems [1], [2], [3]. Estimating
occupancy is thus a key enabling factor for improving comfort
in smart buildings and energy efficiency.

Direct experience indicates that some standard off-the-
shelf dedicated hardware for occupancy estimation (such as
cameras and Radio-Frequency Identification (RFID) tags) may
be both insufficiently accurate for the employment in HVAC
control systems, be inducing large additional deployment and
maintenance costs and be associated with installation feasi-
bility problems in old buildings. Moreover, hardware-based
occupancy detectors may trigger privacy concerns.

Consequently, an interesting question is whether hardware-
based people counters can be replaced by software-based
occupancy estimators that employ only that information that
is available in standard existing HVAC systems (mainly CO2

concentrations and temperatures), which information is mean-
ingful to process, and what type of statistical processing leads
to efficient estimators.

The main objective of this paper is to study the above
questions, and propose occupancy estimators that retrieve
information on the number of occupants from commonly avail-
able signals, i.e., measurements of CO2 levels and temperature,
HVAC actuation levels (i.e., the amount of fresh air injected in
the rooms), and information on door opening / closing events.

Literature review: the strategies addressing the problem of
estimating the occupancy levels in rooms and buildings can be
categorized into hardware-based and model-based approaches.

The first category includes methods working with dedicated
hardware such as cameras, RFIDs, etc. [4], [5], [6]. As men-
tioned before, the applicability of these methods are restricted
to certain situations due to their potential drawbacks.

In the second category, instead, occupancy levels are in-
ferred indirectly using dynamical models that relate environ-
mental signals with occupancy. These models may be obtained
by employing data-driven techniques (i.e., identification-based
methods) or by exploiting knowledge of the underlying phys-
ical laws (i.e., physics-based methods). The latter techniques
comprise strategies based on mass balance equations or first
principles considerations to relate the number of occupiers,
CO2 concentration, temperature and humidity [7], [8], [9],
[10]. Instead, identification-based approaches aim at estimat-
ing input-output models from data-sets of past measured data.
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Successful approaches exploit machine learning techniques
such as Support Vector Machines (SVMs), Neural Networks
(NNs) and Hidden Markov Models (HMMs) based on CO2

features (e.g., averages of the signals in time, first / second-
order temporal differences) [11], [12].

Statement of contributions: this paper, extension
of [13], extends and characterizes a two-tiers hardware-
free identification-based estimation strategy.

The first tier of the strategy assumes the availability of both
environmental and pilot data, i.e., true occupancy levels, for a
short and well-defined period of time. This information is the
only one used to model the room under consideration, and no
other a-priori knowledge is assumed.

The second tier of the strategy starts formulates the occu-
pancy estimation problem as an inverse problem, i.e., searches
the inputs that best explain the measured data given the
identified model. In this tier we assume the occupancy signal
be piecewise constant and integer, and then cast the estimation
as a fused-lasso problem [14].

A contribution of the manuscript is to derive different
estimators that consider different information sources. More
specifically, we consider the case of adding knowledge of
HVAC actuation signals (how much air is injected in the
room), and the case of adding signals that flagg when doors
are opened or closed.

An other contribution is the analysis of the statistical perfor-
mance of the estimators. We form bounds on the probability of
obtaining incorrect estimates, given the levels of measurement
noise, the identified model and the design parameters of the
estimators.

Structure of the manuscript: Section II formulates the
mathematical problem and the solution methodology. Sec-
tions III and IV describe respectively how to identify the
model of the room from a training set, and how to exploit
this model for estimation purposes. Section V characterizes
the performance of the estimator from a statistical perspective.
Section VI describes how to modify the original estimation
strategy when considering also HVAC actuation levels and
information on doors openings and closings. Section VII
introduces the considered estimation performance indexes, the
experimental setup and the results of the estimation processes.
Section VIII then wraps some conclusions, remarks, and ideas
for future directions. Proofs are collected in the Appendix.

II. PROBLEM DEFINITION AND METHODOLOGY

We consider the following schematic representation of the
dynamics of the concentration of the CO2 and temperature
in a room under well-mixed air assumptions, i.e., in a room
where these quantities are assumed to be spatially constant.

G
c (CO2)

t (temperature)

(door events) e
(ventilation) v
(occupancy) o

disturbances

In the above scheme c(k) represents the concentration of CO2,
t(k) the temperature, v(k) the amount of injected fresh air,
o(k) the occupancy, all at time k. The variable e(k) is a

boolean measurements of door opening and closing events,
i.e., flagging if at time k somebody has potentially entered /
exited the room. G represents an initially unknown dynamic
system relating disturbances, events, ventilation and building
occupancy levels with temperature and CO2 concentration
signals.

The first problem we consider is to find an effective algo-
rithm that transforms measurements of c(k), c(k− 1), . . . and
t(k), t(k − 1), . . . into estimates of o(k). Our proposal is the
following two-tiers estimator:
• Tier 1, training phase: from pilot data on c(k), t(k), and
o(k), identify a LTI system that captures the dynamics of
G (Section III);

• Tier 2, test phase: from measurements of c(k) and
t(k) and the estimated model of the room estimate o(k)
(Section IV).

The first phase addresses a system identification problem,
while the second phase addresses a deconvolution problem.

The second problem we consider is to characterize the
proposed estimator in terms of detection error, i.e., probability
of obtaining wrong estimates as a function of the parameters
of the estimator.

The third problem we consider is how to extend the esti-
mator so to include information on venting levels v(k), v(k−
1), . . ., and door openings / closing events e(k), e(k− 1), . . ..
We shall see that, while including venting levels does not
change the structure and main properties of the estimator,
accounting for door openings and closings change the problem
by adding some opportune constraints.

III. IDENTIFICATION OF THE ROOM MODEL

In this section we describe how to obtain a model for G
starting from pilot data on c(k), t(k), and o(k).

As in [15], [16], [17], [18], [19], we assume the environ-
mental signals to be stationary, the dynamics of the room to
be discrete Linear Time Invariant (LTI), measurement devices
to be synchronized and operate at the same sample time.

The dynamics of the room can be expressed as[
c(k)
t(k)

]
=

[
Gc

(
q−1
)

Gt

(
q−1
)]c(k − 1)

t(k − 1)
o(k − 1)

+

[
wc(k)
wt(k)

]
, (1)

where, without loss of generality,

Gc

(
q−1
)
:=
[
Gcc
(
q−1
)
Gtc
(
q−1
)
Goc
(
q−1
)]
,

Gt

(
q−1
)
:=
[
Gct
(
q−1
)
Gtt
(
q−1
)
Got
(
q−1
)]
,

are matrix polynomials with all the entries with the same
order. The processes wc(k), wt(k) are white Gaussian noises,
independent of each other, representing the innovation process,
i.e., that part of c(k) and t(k) that cannot be predicted from
past measurements.

To estimate the polynomials Gc

(
q−1
)

and Gt

(
q−1
)

that
model the system we consider a classical Prediction Error
Method (PEM) paradigm, i.e., consider the best linear one-
step-ahead predictor of the outputs, namely[

ĉ(k|k − 1)

t̂(k|k − 1)

]
=

[
Gc

(
q−1
)

Gt

(
q−1
)]c(k − 1)

t(k − 1)
o(k − 1)

 , (2)
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obtained by simply neglecting the noise processes. Then, using
PEM-based techniques we can obtain Ĝc

(
q−1
)

and Ĝt

(
q−1
)
,

such that the variance of the prediction errors c(k)− ĉ(k|k−1)
and t(k)− t̂(k|k−1) on the data collected during the training
phase, is minimized. From (2) it follows that the predictors
ĉ(k|k− 1) and t̂(k|k− 1) exploit the same information of the
past.

In Figure 1 the correlation functions (c̄(·), ō(·), t̄(·) repre-
sent signals stripped of the mean)

rc,o(m) :=

∑TTs
k=0 c̄(k)ō(k −m)√(∑TTs

k=0 c̄(k)2
)(∑TTs

k=0 ō(k)2
) ,

rt,o(m) :=

∑TTs
k=0 t̄(k)ō(k −m)√(∑TTs

k=0 t̄(k)2
)(∑TTs

k=0 ō(k)2
) , (3)

are plotted. The correlation functions are computed using
the dataset considered throughout the manuscript. It can be
promptly seen that the signal mostly correlated with the
occupancy is the CO2 level. For this reason, in the rest of
the paper we shall consider only the predictor ĉ(k|k− 1) and
thus focus on the identification of Ĝc

(
q−1
)
.
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Figure 1. Empirical cross-correlations between occupancy and either tem-
perature (rt,o(m)) or CO2 (rc,o(m)), computed using the dataset considered
throughout the manuscript (sampling time ts = 5 minutes).

We then consider the nonparametric approach of estimating
the system’s impulse responses instead of searching for the
optimal coefficients of the polynomials Goc

(
q−1
)
, Gtc

(
q−1
)

and Gcc
(
q−1
)
. The coefficients of the estimated impulse

responses can indeed be truncated to a fixed large number
p and then used to form the aforementioned polynomials1.

Let then gc, gt, and go be column vectors containing the
impulse responses related to c(k), t(k), and o(k), respectively,
and

g :=
[
gTc gTt gTo

]T
,

φc(k) :=
[
c(k − 1) . . . c(k − p)

]
,

φt(k) :=
[
t(k − 1) . . . t(k − p)

]
,

φo(k) :=
[
o(k − 1) . . . o(k − p)

]
,

(4)

with c(k) = t(k) = o(k) = 0 if k ≤ 0. Then, instead
of estimating gc, gt, and go via a classical Least-Squares
(LS) approach (technique usually leading to unsatisfactory
outcomes due to the high variance of the estimates), the
problem is formulated as

ĝ=arg min
{g∈R3p}

‖ctr−Φg‖22 +γ
(
‖gc‖2P +‖gt‖2P +‖go‖2P

)
, (5)

1In this paper we set p = 50.

i.e., as a regularized LS where:
• ‖g‖2P = gTPg with P a positive definite weighting

matrix penalizing candidate impulse responses which do
not decay to zero for large values of the time index. In this
way, P favorites outcomes ĝ that well represent impulse
responses of stable systems. Here we set the matrix P as
P = K−1

β , with[
Kβ

]
i,j

= βmax{i,j}, 0 < β < 1 , (6)

i.e., the stable spline kernel [20], [21], [22], depending on
the hyperparameter β, whose optimal choice is discussed
below;

• γ is a positive real number representing a trade-off
between variance and bias of the estimator, leading for
γ = 0 to the LS estimate of g (solution usually with a
high variance).

The optimal values of γ and β can be computed via either
cross validation-based strategies [23] or empirical Bayes tech-
niques [20], [21]. Once these values have been established, the
solution can be computed in closed form as in the parametric
case [24] as

ĝ =
(
ΦTΦ + γDP

)−1
ΦT ctr , (7)

where DP is block diagonal with four blocks all equal to P .

IV. DECONVOLUTION OF THE OCCUPANCY LEVELS

We now build an estimator ô(k) of o(k) as a function of
the measurements c(k) and t(k) and estimated room dynamics
Ĝcc, Ĝ

t
c, Ĝ

o
c . Let then

ĉ(k|k − 1) = Ĝc

(
q−1
)c(k − 1)

t(k − 1)
o(k − 1)

 , (8)

and consider the CO2 levels prediction error

ε(k) := c(k)− ĉ(k|k − 1). (9)

Under the stated assumptions ε(k) is a homoscedastic zero-
mean Gaussian white noise [25]. Substituting (8) into (9) and
rearranging properly,

Ĝoc
(
q−1
)
o(k − 1)

= c(k)−
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
) ] [c(k−1)

t(k−1)

]
−ε(k),

(10)

where the unknowns are only o(k − 1) and ε(k), since

c̃(k) := c(k)−
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
) ] [c(k − 1)

t(k − 1)

]
can be computed given the available information. Thus (10)
becomes

c̃(k) = Ĝoc
(
q−1
)
o(k − 1) + ε(k), (11)

which shows that the problem of estimating the unknown
o(·) is a deconvolution problem, i.e., the unknown occupancy
signal ô(k) is the input that best describes the observed
output c̃(k), given the knowledge of the transfer function
Ĝoc . Since ε(k) is assumed white and Gaussian, the natural
approach to this problem would be to employ a LS estimator
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of o(·), since this would minimize the overall variance of
the estimation error [23, Chap. 7]. More specifically, let
Ĝoc
(
q−1
)

= g1q
−1+. . .+gpq

−p and let the test set be indexed
by the time instants 0, . . . , Tts. Considering the auxiliary
notation

Ĝ :=



g1 0 . . . 0
g2 g1

...
. . . . . .

...
gp · · · g2 g1

. . . . . . . . .
0 gp · · · g2 g1


o :=

 o(0)
...

o(Tts − 1)


c̃ :=

 c̃(1)
...

c̃(Tts)


the LS estimator can be formulated as the optimization prob-
lem

ô = arg min
õ∈RTts+

∥∥c̃− Ĝ õ
∥∥2

2
, (12)

which performance are usually unsatisfactory, since the high
variance of the estimates make the solution not reflect suitable
room occupancy patterns. To overcome this issue we then
account for the prior information o(k) is non-negative, integer,
and piecewise constant.

We thus formulate the deconvolution problem as finding that
least-changing positive piecewise constant input signal that can
reasonably reduces the mismatch between the estimated and
measured outputs of the system.

More precisely, let

o :=

o(k −N)
...

o(k − 1)

 , c̃ :=

c̃(k −N + 1)
...

c̃(k)


∆o(i) := o(i)−o(i−1), ∆o :=

[
∆o(1), . . . ,∆o(N−1)

]
.

The estimation problem then becomes

ô(k − 1) = arg min
õ∈NN+

∥∥c̃− Ĝ õ
∥∥2

2
+ λ
∥∥∆õ

∥∥
0
, (13)

where:
• ô(k − 1) is a N -dimensional vector with the estimated

values of occupancy at the time instants k−1, . . . , k−N
(for online estimation purposes one might consider to use
just its first entry ô(k − 1));

• the first summand on the RHS represents the LS estimator
of the occupancy, that tries to match the estimated and
measured outputs of the system;

• ‖·‖0, the `0 norm, counts the number of variations of the
candidate inputs, thus penalizing non-piecewise constant
candidate inputs;

• λ is a regularization parameter that trades off the two
previous terms and that is discussed in details in Sec-
tion IV-A.

Unfortunately, Problem (13) is a non-convex non-linear
integer program, and cannot be solved efficiently. To circum-
vent this computational drawback we propose two relaxations:
first, substitute the `0 norm with the `1-norm [26, Sec. 3.4],
which represents its best convex relaxation. Second, extend

the domain of the plausible inputs to RN+ instead of NN+ , so
that the estimation problem becomes

ô(k − 1) =

⌊
arg min

õ∈RN+

∥∥∥c̃− Ĝ õ
∥∥∥2

2
+ λ
∥∥∆õ

∥∥
1

⌉
, (14)

with b·e the vector-wise rounding operator. Problem (14) is a
particular case of fused-lasso estimator, where the solution is
searched among sparse regressor vectors where small changes
are favored with respect to big ones, and the strength of this
preference is dictated by the regularization parameter λ.

The parameter N plays an important role in (14), since it
defines the amount of data employed for estimating ô(k − 1)
(and in particular ô(k − 1)) at each time instant. Clearly,
a large value of N yields more accurate estimates, since
more information is used. However, a large value of N
brings computational issues which could make the computa-
tion of (14) too slow for online operations. Thus, as discussed
in Section VII-B, a good choice of N should consider both
these aspects.

A. Finding the optimal regularization parameter λ

The regularization parameter λ establishes the typical vari-
ability of the room occupancy signal. Indeed, large values
of λ penalize changes in the value of estimated occupancy,
leading to estimates that are constant for long periods of times.
Small values of λ, instead, lead to occupancy signals with
high frequency components, thus behaving similarly to the
outcomes of the LS estimator (which is obtained by setting
λ = 0).

A reasonable choice of λ is given by that value λ̂ that gives
the best estimation performance during the training phase.
This optimal value can then be computed by the following
algorithm:

1) define a grid Λ of candidate values of λ;
2) for each λ ∈ Λ solve Problem (14) using the c(k), t(k)

and v(k) collected during the training phase, obtaining
ô(λ), i.e., an occupancy estimate as function of λ;

3) compute the optimal regularization parameter as

λ̂ = arg min
λ∈Λ
‖ô(λ)− o‖22 , (15)

with o the occupancy levels measured during the training
phase.

V. CHARACTERIZATION OF THE OCCUPANCY ESTIMATOR

We now derive relations between the probability of obtain-
ing wrong occupancy estimates and the quantities parameter-
izing the estimator, namely the identified linear models, the
noisiness levels of the measurements, and the regularization
parameter λ.

Our first result regards the performance of the estimator
when the occupancy is constant in a window of N past values.
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Proposition 1 Let σε be the variance of the noise in (11), N
the window length in the estimator, and λ the regularization
parameter. Assume that o(k) is a constant signal. Define

∆ :=

−1 1
. . . . . .

−1 1

 ∈ RN−1×N (16)

and V T :=
(

∆Ĝ−1
)†

, where (X)
† denotes the Moore-

Penrose pseudoinverse of X . Then ô(k) is detected as
constant with probability of at least α if

λ2 > σ2
εχ
−1
α (N)‖Vm‖2 (17)

where χ−1
α (N) is the inverse of the chi-square Cumulative

Distribution Function (CDF) with N degrees of freedom for
the corresponding probability α and ‖Vm‖2 := maxi ‖Vi‖2,
with Vi the i-th row of V .

The following result studies the case where o(k) has a
variation.

Proposition 2 Let σε be the variance of the noise in (11),
N the window length in the estimator, λ the regularization
parameter. Define ∆̄ ∈ RN−1×N−1, obtained removing the
first column of ∆ and V̄ T :=

(
∆̄H̄−1

)−1
. Assume that the

first value of the estimated occupancy is set to the true one,
i.e., ô(k − N) = o(k − N), and that o(k) has a unique
discontinuity given by a variation of one unit. Then, ô(k)
is detected as constant, i.e., there is a missed change with
probability of at least α if

λ2 > σ2
εχ
−1
α (N)‖V̄1‖2 + (1 + o(k −N)

2
)‖V̄1‖4 , (18)

where V̄1 is the first row of V̄ .
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20
30
40

P [ô(k) is constant]

λ
m
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Figure 2. Graphical representation of bound (17) as functions of the
probability α for a given σ2

ε.

The previous results can easily be extended to the more
general case where the true occupancy is piecewise constant
with ρ discontinuities of +1 units. The sufficient condition to
estimate a constant signal in this case will be∥∥∥∥ ε

σε

∥∥∥∥2

<
λ2 − (ρ+ o(k −N)

2
)
∥∥V̄1

∥∥4

σ2
ε

∥∥V̄1

∥∥2

or, equivalently, λ2 > σ2
εχ
−1
α (N)‖V1‖2 + (ρ + o(k −

N)2)‖V1‖4.

VI. ACCOUNTING FOR ADDITIONAL INFORMATION

We here address the cases where the available information
contains the additional signals v(k) (venting levels, i.e., how
much fresh air is injected in the room) and d(k) (door events,
i.e., if the door has been opened / closed at time k).

A. Accounting for venting levels

When the signal v(k) is available, immediate generaliza-
tions lead to express (8) as

ĉ(k|k − 1) = Ĝc

(
q−1
)

c(k − 1)
t(k − 1)
v(k − 1)
o(k − 1)

 , (19)

Ĝc

(
q−1
)

=
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
)
Ĝvc
(
q−1
)
Ĝoc
(
q−1
)]
.

This leads to natural extensions of the system identification
procedures of Section III, with g :=

[
gTc gTt gTo

]T
, and

ĝ=arg min
{g∈R3p}

‖ctr−Φg‖22 + γ
(
‖gc‖2P +‖gt‖2P +‖go‖2P

)
.

The same extension applies to the deconvolution step: (11)
indeed remains structurally the same as soon as c̃(k) is
redefined as

c̃(k) := c(k)−
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
)
Ĝvc
(
q−1
) ]c(k − 1)

t(k − 1)
v(k − 1)

 .
B. Accounting for door opening and closing events

Assume now the knowledge of e(k), i.e., of flags stating if
at time k somebody has potentially entered / exited the room.
More precisely, assume that e(k) = 0 ⇒ o(k) = o(k − 1),
while no information is added on o(k) when e(k) 6= 0 is
available.

As for the system identification problem, information on
e(k) is non-influential, i.e., does not modify the derivations
performed in Section III, since during the identification the
knowledge on the occupancy levels is considered complete.
In other words, o(k) contains already the information in e(k).

As for the deconvolution problem, knowing e(k) changes
the structure of the estimator, since e(k) naturally constraints
the estimand occupancy levels to be identical when e(k) = 0.
More precisely, knowing e(k) corresponds to know the spar-
sity pattern of the to-be-reconstructed signal. This imply that
the regularization term ‖∆õ‖0 in (13) is a constant factor that
does not depend on the decision variables, and thus that (13)
is equivalent to the Integer Quadratic Program (IQP)

ô(k − 1) = arg min
õ∈NN+

∥∥c̃− Ĝ õ
∥∥2

2

s.t. ∆õ(k) = 0 for all e(k) 6= 0.
(20)

Following the motivations that brought from (13) to (14), (20)
can thus be relaxed with

ô = arg min
õ∈RTts+

⌊ ∥∥c̃− Ĝ õ
∥∥2

2

⌉
s.t. ∆õ(k) = 0 for all e(k) 6= 0.

(21)
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Due to the lack of the regularization term, (21) does not require
tunings of regularization parameters, as did instead for (14).

For sake of completeness, we then further modify (21) and
add back the `1 regularization term λ‖∆õ‖1 to obtain

ô = arg min
õ∈RTts+

⌊ ∥∥c̃− Ĝ õ
∥∥2

2
+ λ‖∆õ‖1

⌉
s.t. ∆õ(k) = 0 for all e(k) 6= 0.

(22)

As noticed before, this regularization term corresponds thus to
favor, in the occupancy signal, small changes to big ones, with
the strength of this preference dictated by the regularization
parameter λ. Obviously, implementing estimator (22) requires
to find the optimal λ, as described in Section IV-A.

VII. EXPERIMENTS

Tests have been performed in one of the rooms of the KTH
ACL-HVAC testbed, see http://hvac.ee.kth.se/ for more infor-
mation. The information collected, available at http://hvac.ee.
kth.se/datasets.html, comprises two weeks of measurements
of CO2 and temperature levels from HDH sensors, and of
venting, cooling, and heating actuation levels from the central
HVAC system. Occupancy levels were manually registered for
the whole period, with a time accuracy of 1 minute. To uniform
the sampling times of the various signals (5 minutes), or in
case of missing measurements, the information was resampled
using linear interpolation schemes. The first week was used as
a training set, while the second week was used as a test set.

A. Definition of the performance indexes

We consider four performance indexes: i) the Mean Squared
Error (MSE) (23), characterizing the relative estimation errors;
ii) the accuracy (25), reporting how many times the estimator
returns the correct value; iii) the false positive / false nega-
tive occupancy detection rates (28), describing the ability of
discriminating the presence / absence of occupants in terms
of false positives (when the room is estimated to be occupied
while it is not) and false negatives (when the room is estimated
to be empty while it is not).

The MSE associated with o and ô is

MSE (ô) :=
‖ô− o‖22
‖o‖22

. (23)

To define the other performance indexes we then transform
the signals o, ô with codomain N+ (number of occupants) to
signals with codomain {0, 1} (room is non occupied, room is
occupied) through indicator functions, i.e., through

1 (o(k)) :=

{
1 if o(k) > 0

0 otherwise
, 1 (o) :=

 1 (o(1))
...

1 (o(N))

 .
(24)

Given (24), the accuracy of the estimate ô is

Acc (ô) :=
N −

∑N
k=1 1 (o(k)− ô(k))

N
. (25)

To define the false positive / negative rates we introduce

Nθ := {t s.t. 1 (o(k)) = θ} , (26)

dividing the time indexes in two sets: N0, for the k’s for which
the room was not occupied, and N1, for the k’s for which the
room was occupied. With this it is possible to capture the
mistakes “the room is estimated to be occupied while it is
empty”, “the room is considered empty while it is occupied”
with

β̂(θ) :=
1

|Nθ|
∑
k∈Nθ

1 (ô(k)) , (27)

where we remark that the summation is performed over the
set Nθ. With (27) the false positive and false negative rates
become

FP (ô) := β̂(0), FN (ô) := 1− β̂(1). (28)

B. Summary of the results

1) Evaluation of the importance of additional information:
Let us postpone discussing the choice of the parameters λ
and N to the following subsections, and assume for now that
these parameters have been already optimally chosen. Table I
then numerically assesses the value of knowing the ventilation
levels v(k) and the door openings / closing flags e(k), while
Figure 3 depicts graphically the realizations of the results.

Estimator MSE Accuracy FP FN

(14) 0.208 0.822 0.039 0.028
(14)+v 0.124 0.888 0.007 0.018

(21) 0.217 0.884 0.001 0.028
(22) 0.109 0.886 0.006 0.008

Table I
COMPARISON OF THE PERFORMANCE OF ESTIMATORS (14), (14) WITH

KNOWLEDGE OF VENTILATION LEVELS v(k), (21) AND (22).

1
3 measured

(14)

1
3 measured

(14)+v

1
3 measured

(21)

1
3 measured

(22)

oc
cu

pa
nc

y

Figure 3. Realizations of the estimates for the test set considered in our
experiments for the various estimators proposed in this manuscript.

2) Evaluation of the sensitivity to the regularization param-
eter λ: Let us postpone discussing the choice of the parameter
N to the following subsection, and assume for now that this
parameter has been already optimally chosen. λ dictates the
typical variability of the estimated occupancy patterns, and
is set during the test phase as that value λ̂ that leads to the
best estimation performance in the training set. Since the best
value for the test set may be different from the best value in
the training set, it is important to evaluate the effects of this
unavoidable mismatch.
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Figure 4 plots the MSE for different λ’s for estima-
tor (14)+v for both the training and test sets. The dependency
on λ appears relatively weak in the test set, and the MSE of
the training and test sets attain their minima at approximately
the same point. This suggests that the proposed estimation
strategy for λ is reliable and effective.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

λ

M
SE

Training
Test

Figure 4. Sensitivity of the performance of estimator (14)+v w.r.t. the choice
of λ.

3) Evaluation of the sensitivity to the optimization horizon
N : N trades-off computational requirements with informa-
tion: the larger the optimization horizon, the more information
the estimators have about the dynamics of the system. Intuition
suggests that, after a certain horizon length, adding more
information does not improve the estimation performance, i.e.,
after this horizon the old dynamics do not influence the current
estimates. The results shown in Figure 5 indicate that this
length is, in our experiments, of about 5 days.

0

0.2

0.4

M
SE

1 2 3 4 5 6
0.8

0.9

optimization horizon [days]

A
cc

ur
ac

y 0
0.02
0.04

FP

1 2 3 4 5 6
0

0.02
0.04

optimization horizon [days]

FN

Figure 5. Dependency of the performance of estimator (22) w.r.t. the choice
of N .

VIII. CONCLUSIONS

We proposed methods for estimating occupancy levels in
closed environments that exploit different amounts of informa-
tion, and aimed at understanding which is the most meaningful
information to estimate how occupancy levels change in time.
The main assumption made is that the estimator can, for
learning purposes and for a short period of time, access to
direct measurements of the true occupancy levels.

All the proposed estimation strategies first obtain Linear
Time Invariant (LTI) models by suitable identification tech-
niques, and then formulate the occupancy estimation problem
as a regularized deconvolution problem (where the regulariza-
tion exploits prior information on the features of the searched
signal). The obtained results show that adding information on
ventilation and door opening / closing events can double the
performance indexes of the estimators.

We also analyzed the theoretical statistical performance of
the estimators, and shown that the probability of obtaining
wrong estimates can be suitably bounded once one knows the
measurements noise variance.

The idea considered in this paper can be extended towards
the construction of occupancy estimators for whole buildings,
and thus for the identification of building occupancy pattern
models. Moreover, since the dynamics are assumed linear, it
may be possible to adapt the models identified in a single room
to other rooms of the same building, by an opportune rescaling
of the identified impulse responses accounting variations in the
structural properties of rooms.

Another appealing idea is to exploit blind system identifi-
cation techniques to estimate both the system dynamics and
the building occupancy at the same time, thus removing the
assumption on the availability of the building occupancy signal
for a given period.

APPENDIX

A. Proof of Proposition 1

The proof is divided in 3 main parts: i) rewrite (14), derive
the dual of the new problem and the structure of its solution.
ii) find some analytical relations between the estimated and
the true occupancy levels. iii) exploit these relations to derive
bounds that characterize the statistical performance of the
estimator.

i): Introduce the variable z := ∆õ and rewrite (14) as

arg min
õ ∈ RN+

z ∈ RN−1

1

2

∥∥∥c̃− Ĝõ∥∥∥2

2
+ λ
∥∥z∥∥

1

s.t. z = ∆õ ,

(29)

where, for the purposes of the proof, the function b·e (the
vector-wise rounding operator) is omitted. The Lagrangian
of (29) is then

L (õ, z,u) =
1

2

∥∥c̃− Ĝ õ
∥∥2

2
+ λ
∥∥z∥∥

1
+ uT (∆õ− z) (30)

where u is the Lagrange multiplier. The dual problem, ob-
tained minimizing L w.r.t. õ and z, is [27]

arg min
u∈RN

1

2

∥∥∥∥c̃− (∆Ĝ−1
)T

u

∥∥∥∥2

2
s.t. |u|∞ ≤ λ.

(31)

We notice that, since Ĝ is a lower triangular matrix, Ĝ
admits inverse as soon as g1 6= 0. This is then satisfied as soon
as there is (only) one delay in the effects of the occupancy on
the CO2 levels of the room.

To obtain the structure of the dual solution, consider again
the derivative of the Lagrangian with respect to z

min
z
L (õ, z,u) = min

z
(λ
∥∥z∥∥

1
− uTz)

=

{
0 if |u|∞ ≤ λ,
−∞ otherwise .

(32)
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Let then ûλ be the dual solution and ẑ = ∆ôλ be the primal
solution of (29) for a specific λ. Given the computations above,
it satisfies

ûλ,i ∈

 {+λ} if (∆ô)i > 0,
{−λ} if (∆ô)i < 0,[
−λ, λ

]
if (∆ô)i = 0.

(33)

In other words, in order to maximize (32), the ith element of
the dual solution, i.e., ûλ,i, should be +λ if the corresponding
element in the primal solution is positive and it should be −λ
if the corresponding element in the primal solution is negative,
see [27]. For those elements of the primal solution with zero
values we can only say that the dual problem must satisfy the
condition |u|∞ ≤ λ.

From (33), one can conclude that |ûλ,i| 6= λ , only if
(∆ô)i = 0.

ii): relax problem (31) by removing the∞-norm constraint.
The resulting problem is a unconstrained Least-Squares (LS)
problem, with solution

uLS =
(

∆Ĝ−1
)T †

c̃. (34)

If ‖uLS‖∞ < λ holds, then two facts hold:
1) uLS is also the solution of problem (31);
2) due to the last implication described in i), ∆ô = 0, i.e.,

the estimated occupancy is a constant signal.
These two facts connect variations in the estimate ∆ô with
the measured signal c̃, considering V T :=

(
∆Ĝ−1

)†
, since

they read as

‖V c̃‖∞ < λ ⇒ ∆ô = 0. (35)

To explicit c̃, consider that the vectorized version of (11)
reads as

c̃ = Ĝo + ε, (36)

with ε ∈ RTts white and Gaussian innovation, and o the true
occupancy signal. Rewriting V as

V =
(

∆Ĝ−1Ĝ−T∆T
)−1

∆Ĝ−1 (37)

and eventually, substituting (37) into (35), we rewrite the latter
as ∥∥∥∥(∆Ĝ−1Ĝ−T∆T

)−1

∆Ĝ−1
(
Ĝo + ε

)∥∥∥∥
∞
< λ , (38)

which in turn implies ∆ô = 0. As can be seen, (38) relates
conditions on the true occupancy o and the innovation process
ε with conditions on the final estimate ô.

iii): we now analyze the case when the true occupancy is
constant (∆o = 0). In this case condition (38) reads as

‖V ε‖∞ < λ ⇒ ∆ô = 0, (39)

that is equivalent to{
|〈Vi, ε〉|2 < λ2

}
i=1,...,N

⇒ ∆ô = 0 . (40)

The Cauchy-Schwarz inequality yields 〈Vi, ε〉|2 ≤
‖Vi‖2‖ε‖2. Letting ‖Vm‖2 := maxi ‖Vi‖2, the sufficient
condition for (39) becomes

‖Vm‖2‖ε‖2 < λ2 ⇒ ∆ô = 0. (41)

In (41) Vm is known, while ε is white Gaussian noise:
thanks to the Prediction Error Method (PEM) paradigm, εi ∼
N (0, σ2

ε), with σ2
ε estimated during the system identification

phase. It thus follows that∥∥∥∥ ε

σε

∥∥∥∥2

=

Tts∑
i=1

(
εi
σε

)2

∼ χ2 (N) , (42)

where χ2(N) is a Chi-squared distribution with N degrees of
freedom. Thus, with the probability of at least α, ‖ε‖2 will
have the following upper bound

‖ε‖2 ≤ (σε)
2
χ−1
α (N) , (43)

where χ−1
α (N) is the inverse of the chi-square cdf with N

degrees of freedom for the corresponding probability α. Sub-
stituting (43) into (41), we get the statement of the proposition.

B. Proof of Proposition 2

In this case, we impose another constraint on the opti-
mization problem (14) by setting the first element in the
occupancy signal to its true value. Using the same approach
as in the proof of the proposition 1, we will have (29) subject
to õ(1) = o(k −N), where o(k −N) is the true value of the
occupancy signal at time k−N . Substituting the new constraint
õ(1) = o(k −N) into the cost function, one can rewrite (29)
as

arg min
ō ∈ RN+

z ∈ RN−1

1

2

∥∥c̄− H̄ō
∥∥2

2
+ λ
∥∥z − ō∗

∥∥
1

s.t. z = ∆̄ō ,

(44)

where

ō∗ :=
[
o(k −N) 0 · · · 0

]T ∈ RN−1×N−1.

Using the same approach as before the dual problem for (44)
will be

arg min
u∈RN

1

2

∥∥∥c̄− (∆̄H̄−1
)T

u
∥∥∥2

2

s.t. |u|∞ ≤ λ,
(45)

where the Lagrange multipliers satisfy

ûλ,i ∈


{+λ} if

(
∆̄ō− ō∗

)
i
> 0,

{−λ} if
(
∆̄ō− ō∗

)
i
< 0,[

−λ, λ
]

if
(
∆̄ō− ō∗

)
i

= 0.
(46)

Notice that ∆̄ is invertible and thus the condition (38) for this
case reads as∥∥∥(V̄ V̄ T )1 o∗ +

(
V̄ V̄ T

)k ± V̄ ε
∥∥∥
∞
< λ ⇒ ∆̄ō− ō∗ = 0

(47)
where

(
V̄ V̄ T

)k
is the k-th column of V̄ V̄ T and V̄ =

(H̄∆̄−1)T . Notice that this is a upper triangular Toeplitz
matrix, satisfying (letting V̄j be the j-th row of V̄ )∥∥V̄1

∥∥2 ≥
∥∥V̄2

∥∥2 ≥ . . . ≥
∥∥V̄N∥∥2

. (48)
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This implication refers to the case where the estimator makes
the error of not finding the change in the occupancy signal at
time k.

The ∞-norm above can be expanded, as before, to obtain
the component-wise equivalent condition{∣∣〈V̄i, V̄1〉o∗ + 〈V̄i, V̄k〉 ± 〈V̄i, ε〉

∣∣ < λ
}
i=1,...,N

⇒ ∆̄ō = ō∗

(49)
or, using the bilinearity of inner products,{∣∣〈V̄i, V̄1o(k −N) + V̄k ± ε〉

∣∣ < λ
}
i=1,...,N

⇒ ∆̄ō = ō∗.
(50)

Cascading now Cauchy-Schwarz and triangular inequalities
with (48) and (50) it is possible to derive the sufficient
condition∥∥V̄1

∥∥2
(∥∥V̄1

∥∥2
o(k −N)

2
+
∥∥V̄1

∥∥2
+ ‖ε‖2

)
< λ2

⇒ ∆̄ō = ō∗
(51)

or, equivalently,∥∥∥∥ ε

σε

∥∥∥∥2

<
λ2 − (1 + o(k −N)

2
)
∥∥V̄1

∥∥4

σ2
ε

∥∥V̄1

∥∥2 ⇒ ∆̄ō = ō∗.

(52)
Same considerations as in the previous case thus follow
and (52) can be read as

λ2 > σ2
εχ
−1
α (N)‖V̄1‖2 + (1 + o(k −N)

2
)‖V̄1‖4. (53)
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