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Abstract— Interested in scalable topology reconstruction1

strategies with fast convergence times, we consider network2

cardinality estimation schemes that use, as their fundamental3

aggregation mechanism, the computation of bit-wise maxima4

over strings. We thus discuss how to choose optimally the5

parameters of the information generation process under fre-6

quentist assumptions on the estimand, derive the resulting7

Maximum Likelihood (ML) estimator, and characterize its8

statistical performance as a function of the communications9

and memory requirements. We then numerically compare the10

bitwise-max based estimator against lexicographic-max based11

estimators, and derive insights on their relative performances12

in function of the true cardinality.13

Index Terms— distributed estimation, size estimation, bitwise14

max consensus, quantization effects, peer-to-peer networks.15

I. INTRODUCTION16

Information on the topology of a communication network17

may be instrumental in distributed applications like optimiza-18

tion and estimation tasks. For example, in distributed re-19

gression frameworks, knowing the number of active sensors20

allows to correctly weight prior information against evidence21

of the data [1]. Moreover, continuously estimating the num-22

ber of active nodes or communication links corresponds to23

monitoring the network connectivity, and thus to being able24

to trigger network reconfiguration strategies [2].25

The focus is then to understand how to distributedly26

perform topology reconstruction given devices with bounded27

resources (e.g., battery / energy constraints, communication28

costs, etc.). Of course, considering different trade-offs leads29

to different optimal strategies. Here we are motivated by30

real-world applications such as vehicular traffic estimation31

and specifically consider the case of peer-to-peer networks32

where all the participants are required to: i) share the same33

final result (and thus the same view of the network); ii) keep34

the communication and computational complexity at each35

node uniformly bounded in time; iii) reach consensus on36

the estimates using the smallest number of communications37

possible.38
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Since aggregation mechanisms scale better than flooding 39

or epidemic protocols (at the cost of some loss of infor- 40

mation) [3], [4], the aforementioned objectives are usually 41

addressed using order statistics consensus aggregation mech- 42

anisms (like max, min, and combinations of them). Natural 43

questions are then: which one is the scheme that leads to 44

topology estimators that are optimal in Mean Squared Error 45

(MSE) terms? And what are the fundamental limitations of 46

information aggregation for topology estimation purposes, 47

i.e., what can be estimated and what not? 48

Towards answering what is the maximum achievable ac- 49

curacy of aggregation-based estimators, here we focus on 50

max-consensus strategies and pursue to characterize the fun- 51

damental properties of aggregating maxima for cardinality 52

estimation purposes. 53

Literature review: if agents of a network are not 54

constrained to keep their communication and memory re- 55

quirements fixed at every iteration, then it is known that 56

one can reconstruct the whole topology of a network by 57

both exchanging tables of the agents IDs, if these IDs are 58

unique, or using simple randomized techniques to generate 59

these IDs [5]. If instead communications and memory re- 60

quirements have to stay constant in time, and IDs are not 61

guaranteed to be unique, there exists no algorithm that always 62

computes correctly with probability one, in finite time and 63

with a bounded average bit complexity even just the size of 64

the network [6], [7]. 65

These results motivate the existence of probabilistic count- 66

ing algorithms, where agents estimate the size of their 67

network by either performing different actions based on the 68

perceived events (as in interval sampling, capture-recapture 69

or random walks [8], [9], [10], [11], [12], [13]) or performing 70

the same actions in parallel (as in the case where all the 71

agents are required to share the same knowledge) [14], [15] 72

[16]. 73

The particular scenario considered in this manuscript is 74

usually approached endowing each agent with (possibly non- 75

unique) IDs and letting then the network compute opportune 76

statistics of these IDs. Estimators of this kind have three 77

building blocks: 1) an initialization phase, where the local 78

memory yi of each agent i is initialized locally using some 79

probabilistic mechanism; 2) an aggregation phase, where the 80

network distributedly computes an opportune function of the 81

initial yi’s and eventually reaches consensus on a value y; 82

3) an estimation phase, where each agent infers the size of 83

the network from y. 84

Aggregating the yi’s using average consensus is then 85

known to lead to estimators whose statistical performance 86



improve either linearly [17], [18], [19], [20] or exponen-1

tially [21] with the size of yi’s (depending on how the ii’s2

are initialized). Averaging nonetheless has the big drawback3

of slow convergence dynamics (a property that is inherited4

from the underlying averaging process).5

Aggregating the yi’s using order statistics consensus (e.g.,6

max-consensus) has the advantage of converging in a smaller7

number of communication steps then is required by an8

averaging process. Specifically, the computation of maxima9

over the yi’s can be performed in two different ways: 1)10

using a lexicographic order, if the yi represent a real number11

(or a vector thereof); 2) bitwise, when the yi are viewed as12

a string of bits.13

The properties of estimation strategies using the lexi-14

cographic order have been analyzed in the literature and15

variants of these schemes have been proposed to address16

specific tasks. Statistical characterizations can be found17

in [22], [23], [20], [24], and have been improved in [25] by18

exploiting the aggregation of order statistics (i.e., computing19

the k-th biggest maximum of the various yi instead of20

just the maximum value. This leads to an estimator that21

is a perfect counter for small networks and with the same22

estimation performance of the aforementioned methods for23

big networks). [26], [27] instead exploit temporal repetitions24

of the max-consensus strategy to build estimators that are25

tailored for dynamic networks with size changing in time.26

In contrast, the literature on bitwise strategies is not so27

abundant: at the best of our knowledge the unique manuscript28

is [28] where the authors generate the yi’s with Bernoulli29

trials similarly to what we propose here, but both derive a30

different estimator (cf. the following statement of contribu-31

tions) and do not consider the optimal design of the Bernoulli32

parameters.33

Statement of contributions: we consider network size34

estimation based on bitwise max-consensus strategies. This35

focus is motivated by the fact that the literature dealing with36

lexicographic max consensus is at the best of our knowledge37

neglecting the discrete nature of the yi’s and obtains approx-38

imate results that are based on the assumptions that the yi’s39

are absolutely continuous r.v.s; in other words the literature40

ignores quantization effects. With analyzing bitwise max-41

consensus schemes we thus both begin accounting for the42

discrete nature of the yi’s and work towards understanding43

the performance limitations of computing maxima bitwise or44

lexicographically. Our contributions are thus:45

• extending [28] by considering potentially non-46

identically distributed bits, and determining the optimal47

Bernoulli rates using frequentist assumptions in (13);48

• obtaining the novel ML estimator (18), different from49

the one in [28], characterizing its statistical properties50

in Propositions 2 and 3, and verifying that it practically51

reaches its Cramér-Rao (C-R) bound;52

• comparing bitwise and lexicographic estimators and col-53

lecting numerical evidence on which strategy is optimal54

in Sec. VII.55

Organization of the manuscript: Sec. II introduces our56

assumptions, while Sec. III formally casts the cardinality57

estimation problem. Sections IV, V and VI address different 58

aspects of the estimation problem, by respectively design- 59

ing the structure of parameters dictating the information 60

generation scheme, determining the functional structure of 61

the estimator, and characterizing its statistical performances. 62

Sec. VII then compares the performance of our bitwise-max 63

estimator with that of lexicographic-max strategies. Finally, 64

Sec. VIII collects a few concluding remarks and discusses 65

future directions. 66

II. BACKGROUND AND ASSUMPTIONS 67

We model a distributed network as a connected undirected 68

graph G = (V,E) comprising N = |V | collaborating agents. 69

We assume that the network operates within the following 70

shared framework: 71

Memory model: the generic agent i ∈ V avails locally 72

of a memory storage of M -bits that is represented by the 73

vector 74

yi =
[
yi,1 yi,2 . . . yi,M

]T ∈ {0, 1}M . (1) 75

Communication model: time is partitioned into an 76

ordered set of equally lasting intervals indexed by t = 77

0, 1, 2, . . ., each referred to as an “epoch”. During each 78

epoch, randomly, uniformly and i.i.d. during the epoch, each 79

agent i ∈ V broadcasts its whole yi to all its neighbors 80

through a perfect channel (i.e., without collisions, delays, or 81

communication errors). 82

Aim of the agents: to estimate the cardinality of the 83

network N while being subject to the following constraints: 84

C1) obtain the same estimate when the algorithm terminates 85

(i.e., letting N̂i denote the final estimate for the generic 86

agent i, it is required that N̂i = N̂ , ∀i ∈ V ); 87

C2) obtain this estimate in d epochs, where d is the net- 88

work’s diameter (notice that in our synchronous pro- 89

tocol d is the minimum number of epochs such that 90

information generated at any node is propagated to the 91

remaining nodes in the network). 92

We moreover assume that N is unknown but deterministic. 93

Agents have no a-priori knowledge on the network topology 94

and thus on its cardinality except for an upper bound on 95

the network size, i.e., there exists a number Nmax such that 96

N ≤ Nmax and Nmax is available to the network. 97

III. PROBLEM FORMULATION: 98

SIZE ESTIMATION WITH BERNOULLI TRIALS 99

Statistical size estimation schemes that are based on ag- 100

gregation strategies share the following common structure: 101

1) during initialization, each agent independently initialize 102

its memory yi extracting a value from a probability 103

distribution P that is independent of N ; 104

2) then agents aggregate the various yi (i.e., distributedly 105

compute a function of y1, . . . ,yN ) and reach consensus 106

on a final y; 107

3) since N parameterizes the previous aggregation process, 108

N becomes statistically identifiable through y. 109

Thus, even if the yi’s do not depend statistically on N , y 110

does, so that y conveys statistical information on N . 111



The design of size estimators is then possible on 3 levels:1

1) which P to use to initialize the yi’s; 2) which aggregation2

scheme to use; 3) how to map the final aggregate y into a3

point estimate N̂ of N .4

As for the first design level, we consider the specific P5

for which the yi’s are initialized bit-wise, i.e., for which6

each smallest atom of available information is initialized7

independently. More specifically, we assume that each M -8

dimensional memory yi = [yi,1, . . . , yi,M ] is initialized with9

M i.i.d. Bernoulli samples, i.e., with10

yi,m =

{
1 with probability 1− θm
0 with probability θm

m = 1, . . . ,M .

(2)11

As for the second design level, we consider the bit-wise12

max consensus of the yi’s, an aggregation operation that13

eventually yields (in finite time and at each agent) the vector14

y = [y1, . . . , yM ]T , ym := max
i∈V
{yi,m}, m = 1, . . . ,M

(3)15

with probability16

P [y ; N,θ] =
∏

{m : ym=1}
(1− θNm)

∏

{m : ym=0}
θNm (4)17

with θ := [θ1, . . . , θM ]. The generated information y is thus18

statistically dependent on the unknown network cardinality19

N , so that N is statistically identifiable through y.20

As for the third design level, given our lack on a-priori21

knowledge on N , we make the classical choice of letting N̂22

be the ML estimator of N given y.23

From these considerations arise the following three ques-24

tions:25

Q1) what is the functional structure of N̂?26

Q2) What is the θ that minimizes the MSE of N̂?27

Q3) Does N̂ have some optimality property?28

IV. DESIGNING θ29

Before answering Q1 we proceed to answer Q2. Our30

approach to the design of θ in (4) is then to consider the31

so-called C-R inequality [29, Eq. 4.1.61], i.e., the fact that32

the smallest variance that can be achieved by any estimator33

N̂ (y) of N given y is bounded below. Specifically, under34

mild assumptions holding in our framework, it holds that35

var
(
N̂ (y)

)
≥


1 +

∂E
[
N̂ (y)−N

]

∂N




2

I (N ;θ)
(5)36

where I (N ;θ) is the Fisher Information (FI) [29, Def. 4.1.4]37

about N given y, i.e.,38

I (N ;θ) := E

[(
∂ lnP [y ; N,θ]

∂N

)2
]
. (6)39

Neglecting the bias term, (5) implies immediately that a40

small FI I induces estimators with high variance.41

Our choice is then to consider the bias term negligible, 42

select that θ that minimizes the worst C-R bound over all 43

the possible N ’s, and thus to solve 44

θ∗ := arg max
θ∈(0,1)M

min
N∈{1,...,Nmax}

I (N ;θ) . (7) 45

Instrumental to (7), we notice the following lemma: 46

Lemma 1 For any fixed N , 47

θ∗ (N) := arg max
θ∈(0,1)M

I (N ;θ) =
[
α1/N , . . . , α1/N

]
(8) 48

where 49

2− 2− lnα

α
= 0 ⇒ α ≈ 0.2031878699 . . . (9) 50

Proof (of Lemma 1) Since the ym’s in (3) are independent, 51

I (N ;θ) =

M∑

m=1

E

[(
∂ lnP [ym ; N, θm]

∂N

)2
]
,

=

M∑

m=1

θNm(ln θm)2

1− θNm
.

(10) 52

Thus to maximize (10) it is sufficient to maximize the single
term

θN (ln θ)2

1− θN =: i(θ,N),

and this already implies that the vector θ∗ (N) must have all 53

entries identical. Defining 54

ω(θ,N) := 2− 2 + ln θN

θN
(11) 55

it follows that 56

∂i(θ,N)

∂θ
=

ω(θ,N) ln θ

θ(1− θ−N )2
, (12) 57

i.e., i (θ,N) is maximized for θN = α with α satisfying 58

condition (9). ♦ 59

Given that α1/N is decreasing with N , it then follows 60

immediately from Lemma 1 that (7) is attained by 61

θ∗ =
[
α1/Nmax , . . . , α1/Nmax

]
. (13) 62

V. THE ML ESTIMATOR 63

Given (13), in what follows we assume θm = θ, for m = 64

1, . . . ,M , and analyze the estimation strategy for a generic 65

θ ∈ (0, 1). Thus (2) specializes to 66

yi,m =

{
1 with probability 1− θ
0 with probability θ m = 1, . . . ,M,

(14) 67

while the joint distribution of y in (4) simplifies to 68

P [y ; N ] =
∏

{m : ym=1}
(1− θN )

∏

{m : ym=0}
θN . (15) 69

It is a classic result showing that the sample average 70

y = y (y) :=

∑M
m=1 ym
M

, (16) 71



is a minimal complete sufficient statistic for N . We may in1

fact write (4) in terms of y as P [y ; N ] = (1 − θN )My ·2

θNM(1−y), so that, conditionally on the sample average, the3

probability of observing a given y is independent of θN4

(indeed one can regard y as the main output of the bitwise5

aggregation scheme (3)).6

Starting then from the score of N7

`(y;N) :=
∂ lnP [y ; N ]

∂N
=

(
1− y

1− θN
)
M ln θ , (17)8

the ML estimator follows as9

N̂(y) := arg max
N∈[1,Nmax]

P
[
y ; N

]

=





1 if y ≤ 1− θ
logθ (1− y) if 1− θ < y < 1− θNmax

Nmax otherwise.
(18)10

We notice that in the derivation of the ML estimator we11

relaxed the integer constraint N ∈ {1, . . . , Nmax} by extend-12

ing the search interval to the real segment [1, Nmax]. Indeed,13

while a real size parameter does not match perfectly our in-14

formation generation scheme, considering the unconstrained15

estimator (18) allows us to devise closed-form performance16

characterizations.17

We also notice that by extending N̂(·) to be defined over18

[0, 1] instead of over {0, 1/M, 2/M, . . . , 1}, and letting19

ϑ := 1− θN , 1 ≤ N ≤ Nmax (19)20

be the success rate of each of the generic experiment ym,21

it holds N̂(ϑ) = logθ (1− ϑ) = N (indeed the empirical22

success rate y is a consistent estimator of the success rate23

ϑ). This motivates (18) also as an intuitive estimator of the24

network size.25

VI. CHARACTERIZATION OF N̂ (y)26

On one hand, the distribution of the ML estimator (18)27

can be numerically computed for every θ given the fact that28

My ∼ Bin
(
M, 1− θN

)
. On the other hand, there is no29

dedicated literature reporting closed form characterizations30

of logarithms of binomial random variables. Since a com-31

prehensive analysis of those variables is beyond the scope of32

this paper, we resort to a simplified statistical characterization33

of the ML estimator N̂(y) w.r.t. the classical performance34

indexes35

E

[
N̂ −N
N

]
, var

(
N̂ −N
N

)
. (20)36

Proposition 2 For all 1 ≤ N ≤ Nmax,37

∣∣∣E
[
N̂
]
−N

∣∣∣ ≤ O
(

1

M

)
. (21)38

39

Proof (of Prop. 2) Recall that in our assumptions N is an40

unknown but fixed parameter. Let then Ñ(·) be a smooth41

approximation of N̂(·), i.e., a function Ñ : R 7→ R satisfying 42

Ñ (ϑ) = N̂ (ϑ) , Ñ (y) = N̂ (y) , y = 0,
1

M
,
2

M
, . . . , 1

(22) 43

for all the potential outcomes y, and that is endowed for 44

every Y ∈ [0, 1] with k-th order derivatives 45

Ñ (k)(Y) := ∂Ñ(Y)
∂Y , ∀ k ≥ 1. (23) 46

Notice that such Ñ(·) can be chosen within the ring of 47

polynomials with degree at most M + 1. 48

Consider now the Taylor expansion of Ñ(·) around the 49

success rate ϑ in (19), valid in the whole unitary segment 50

[0, 1] by construction since Ñ is smooth [30, p. 286]. This 51

means that at the points where (22) holds we may rewrite 52

N̂(·) in terms of the Taylor expansion of Ñ(·), i.e., 53

N̂(y) = Ñ(ϑ)− (y − ϑ)Ñ (1)(ϑ) +
(y − ϑ)2

2
Ñ (2)(ζ) (24) 54

where ζ = ζ(y) in the remainder is a real number between 55

ϑ and y. 56

Noticing that, by construction, Ñ(ϑ) = N , and taking the 57

expectation on both sides of (24) w.r.t. y yields then 58

E
[
N̂
]
= N +

c1
M
Ñ (1)(ϑ) +

c2
2M2

Ñ (2)(ζ) (25) 59

with 60

ck :=MkE
[
(y − ϑ)k

]
(26) 61

and 62

c1 = 0, c2 =Mϑ(1− ϑ). (27) 63

We thus recover the assertion by considering that the 64

derivatives Ñ (k)(ϑ) are continuous in the compact [0, 1], and 65

that the coefficients ck are finite. ♦ 66

To assess the role of the term O(1/M) in (21) and of 67

the derivative of the bias appearing in the C-R bound (5) 68

we plot in Figures 1 and 2 numerical evaluations of the 69

interested quantities computed through an opportune Monte 70

Carlo (MC) scheme. 71
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Fig. 1: MC evaluation (106 runs for each θ) of the relative
error mean of N̂ for Nmax = 2000 and different values of
N,M and θ.
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Fig. 2: MC evaluation (108 runs for each θ) of the derivative
of the bias appearing in the C-R bound (5).

Proposition 3 For all 1 ≤ N ≤ Nmax,1

var
(
N̂
)
≤ 1− θN
MθN (ln θ)2

+O

(
1

M2

)

= (I (N ; θ))
−1

+O

(
1

M2

) (28)2

3

Proof (of Prop. 3) Reasonings similar to the proof of4

Prop. 2 provide a lower bound on E
[
N̂
]
, an upper bound5

on E
[
N̂2
]
, and thus inequality (28) through the equivalence6

var
(
N̂
)
= E

[
N̂2
]
− E

[
N̂
]2
. (29)

♦
7
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Fig. 3: In solid lines, the MC evaluation (106 runs for each
θ) of the relative error variance of N̂ for Nmax = 2000 and
different values of N,M and θ. The dashed lines correspond
to first term in the right-hand side of (28).

To assess the role of the term O(1/M2) in (28) we plot in 8

Fig. 3 both numerical evaluations of the performance index 9

var
(
N̂/N

)
(computed through an opportune MC scheme) 10

and the inverse of the FI, i.e., I (N ; θ)
−1, in (10). Together, 11

the Figures 2 and 3 show that the actual variance of the novel 12

estimator N̂ practically reaches the C-R bound (5). 13

Remark 4 We stress that the statistical performance of 14

N̂ (y) reported in Propositions 2 and 3 do not depend 15

on the precise communication topology. Indeed, different 16

topologies may just lead to different convergence times, and 17

not different statistics on the estimate. 18

VII. SIMULATIONS 19

Here we corroborate the characterization reported in 20

Propositions 2 and 3 through a numerical analysis. Specifi- 21

cally, we compare the estimator N̂ (y) in (18) against other 22

estimation strategies with equivalent convergence times and 23

bounded memory requirements. To this aim we consider 24

synthetic networks with variable sizes and study how the 25

performance of N̂ compares against the max-consensus 26

based estimator considered in [20], [22], [27], [4]. This 27

estimator, here called Nuni, can be implemented on top of 28

the synchronous framework of Sec. III through the following 29

specifics (c.f. also the general discussion of Sec. III): 30

i) every i-th agent initializes a local vector wi = 31[
wi,1 . . . wi,K

]
∈ RK by extracting a K-sample 32

from the uniform distribution U [0, 1]; 33

ii) agents distributedly aggregate K maxima entry-wise 34

(rather then bit-wise). The consensus vector resulting 35

from this process is denoted by 36

w =
[
w1, . . . , wK

]
, wk = max

1≤i≤N
{wi,k} . (30) 37

iii) agents locally compute the ML estimator of N given w 38

through 39

Nuni = Nuni(w) :=





1 if χ(w) ≤ 1

χ(w) if 1 < χ(w) < Nmax

Nmax otherwise
(31) 40

where 41

χ(w) :=
K − 1

−∑k lnwk
. (32) 42

It is known that if the above estimator relies on r.v.s wi,k 43

with absolutely continuous distributions then it is irrelevant 44

from which exact absolutely continuous distributions one 45

extracts [20, Prop. 7]. E.g., sampling a Gaussian distribution 46

would lead to an alternative estimator with the same statisti- 47

cal performance of Nuni. Moreover, assuming Nmax = +∞ 48

leads to [20, Eq. (9)] 49

var (Nuni) =
N2

K − 2
. (33) 50

We then notice that the literature dedicated to (31) usually 51

neglects addressing the problem of how to optimally encode 52

each wi,k with a finite number of bits. Nonetheless, to 53



compare N̂ and Nuni in terms of estimation performance vs.1

memory usage we should address this issue. Since at the best2

of our knowledge there is currently no dedicated literature3

on this problem, we consider the most simple (and most4

unfair to N̂ ) comparison approach, namely we evaluate the5

performance of Nuni without considering any quantization6

effects.7

Specifically, to compare the statistical performance of N̂8

against Nuni we:9

1) assume that N̂ uses M bits;10

2) consider several versions of Nuni, denoted with N
(b)
uni11

for b = 2, 3, . . . and with b denoting how many bits one12

would use to encode a single wk in (30). This means13

that the generic N
(b)
uni uses K = ceil (M/b) different14

wk’s – but at the same time we consider these wk’s15

as non-quantized. In other words, we let N (b)
uni operate16

on more scalars as b decreases but then we completely17

discard the negative effects of quantization and let N (b)
uni18

exploit absolutely continuous r.v.s..19

We thus computed numerically scheme the performance of20

N̂ and of the various N (b)
uni , and then compared them graphi-21

cally in Fig. 4. By construction, both estimators converge at22

the same time and ideally require the same communication23

resources; the metric used to compare the two strategies is24

the variance of the relative estimation error.25

The figure highlights an interesting numerical result: for26

any b, N̂ has smaller error variance than N
(b)
uni when N27

is large, while it performs worse when N is small. This28

suggests that there may be a size N , possibly function of29

Nmax, M and b, for which if N > N then using N̂ leads to30

smaller error variances, while if N < N then it is better to31

use N (b)
uni .32

This intuition is motivated by the following argument:33

selecting θ = θ∗ as in (13), neglecting the term O(1/M2)34

in (28) (cf. Fig. 3), and equating the approximated var
(
N̂
)

35

to var
(
N

(b)
uni

)
in (33) (with K = ceil (M/b) ≈M/b) leads36

to an identity of the form37

α−(N/Nmax) − 1

(N/Nmax)2
= (lnα)

2 Mb

M − 2b
(34)38

where the left-hand side of the equation is strictly decreasing39

in N , while the right-hand side is constant. The rule-of-40

thumb (34) would then confirm that for each Nmax, M and41

b there exists a value N for which if N < N then N
(b)
uni42

performs better, while if N > N then N̂ does.43

Nonetheless, we stress that both in our simulations in44

Fig. 4 and in the reasoning that led to (34), only N̂ considers45

the quantized nature of y, while the various N (b)
uni do not.46

We thus expect that actual implementations of N (b)
uni will47

perform worse then what is shown, i.e., that the variance48

var
(
N

(b)
uni

)
in (33) represents a lower bound on the attainable49

performance of actual implementations of N (b)
uni .50
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Fig. 4: MC evaluation (106 runs for point) of the statistical
performance of N̂ and N (b)

uni for Nmax = 2000 and different
values of M,N . N (b)

uni denotes the estimator Nuni when the
number of real scalars wi,k stored at the i-th node is K =
ceil (M/b).

VIII. CONCLUSIONS 51

We aimed at improving the effectiveness of topology 52

inference techniques that aggregate information using max- 53

consensus schemes, starting from the consideration that 54

agents exchange information that is intrinsically quantized. 55

We thus departed from the literature, that usually analyzes 56

schemes based on lexicographic max-consensus operations, 57

and considered strategies that are based on bitwise max- 58

operations. 59

In particular, we considered frequentist assumptions on the 60

estimand (i.e., we considered the estimand network size N 61

to be a deterministic, unknown but fixed quantity) and then 62

characterized that particular estimation scheme where each 63

bit of the information generated during the initialization of 64

the algorithm is generated independently. We notice that the 65

frequentist assumption is fundamental for our discoveries, 66

since it leads to design the information generation scheme 67

so that the final a-consensus quantity has maximal Fisher 68

information content – a property that we found to hold when 69

each bit is generated as an i.i.d. Bernoulli trial. 70

Characterizing the resulting estimation scheme in terms 71

of its statistical performance shows then what we consider 72

being the major contribution of this manuscript: bitwise max- 73

operations are meaningful to build practical estimators, since 74

their MSE is often favorable against the MSEs of estimators 75

based on lexicographic computations of maxima (given the 76

same number of bits exchanged during the consensus proto- 77

col). Nonetheless the bitwise scheme seems to be not always 78

favorable, since lexicographic strategies potentially perform 79

better for small network sizes N . 80

Our major result thus opens more questions than how 81



many it closes: first of all, it calls for a precise analytical1

characterization of when bitwise-max strategies are better2

than lexicographic ones. Moreover it calls for exploring also3

Bayesian approaches, where the estimand N is assumed to4

be a r.v. with its own prior distribution. Indeed we noticed5

that having a good initial guess of the estimand N can be6

exploited to direct the generation of the initial information,7

and leads to final estimates with better statistical indexes.8

Bayesian scenarios are also intrinsically connected to practi-9

cal situations, e.g., when estimation rounds are continuously10

repeated for network monitoring purposes so that information11

on the estimand is accumulated from one step to the next one.12
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