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Networks cardinality estimation using order statistics
Riccardo Lucchese, Damiano Varagnolo

Abstract— We consider a network of collaborative peers that aim1

at distributedly estimating the size of the network they belong to.2

We assume nodes to be endowed with unique identification numbers3

(IDs), and we study the performance of size estimators that are based4

on exchanging these IDs. Motivated by practical scenarios where the5

time-to-estimate is critical, we specifically address the case where the6

convergence time of the algorithm, i.e., the number of communications7

required to achieve the final estimate, is minimal. We thus construct8

estimators of the network size by exploiting statistical inference concepts9

on top of the distributed computation of order statistics of the IDs, i.e.,10

of the M biggest IDs available in the network. We then characterize the11

statistical performance of these estimators from theoretical perspectives12

and show their effectiveness in practical estimation situations by means13

of numerical examples.14

Index Terms— Distributed size estimation, distributed counting, or-15

der statistics consensus, peer-to-peer networks, cooperative systems,16

event detection.17

I. INTRODUCTION18

In distributed applications knowing the properties of the un-19

derlying communication networks may lead to better performing20

algorithms. E.g., knowing the number of nodes may lead to more21

precise distributed estimators [1]. It is thus meaningful to seek22

for estimators of the properties of the communication graphs that23

sense these properties with the smallest possible computational24

/ communications overheads. Moreover, this sensing should be25

distributed, i.e., conform to the distributed computations paradigm26

where the network lacks of a centralized authority and the nodes27

are peers.28

Consider then the following technology for solving the archetypal29

problem of estimating the size of a network, at first sight the30

most simple one in terms of computational and communications31

overheads: let every node i of the network be associated to an32

identification number (or ID) yi, initially known only by itself.33

Then let nodes form, store and propagate lists of these yis among34

them. When a node i has collected the complete list, the size of35

the network can be determined exactly by inspecting the size of the36

list itself1.37

Without constraints on how many yis one can send per packet,38

the network size estimation problem is thus trivial. If, instead, the39

number of transmittable yis is limited, and therefore only a subset40

of the yis can be sent per packet, then nodes must select which yis41

should be communicated at each round. This degree of freedom42

makes the estimation problem more interesting.43

In this manuscript we study which selection mechanisms should44

be implemented, and what are the consequences of these selection45

processes, considering the following two practical requirements: i)46

the strategy should minimize the convergence time, i.e., the number47

of communications among nodes to achieve the final estimate; ii)48

the strategy should lead nodes to share an identical final estimate.49
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1In fact, one can build on top of this simple strategy to infer the entire
topology of the network, see [2].

Literature review: the problem of distributedly counting or 50

inferring networks cardinalities has been extensively studied in the 51

literature. There is a vast portfolio of techniques, each characterized 52

by different properties and trade-offs: performing random walks [3], 53

[4], [5], [6], [7], [8], computing averages of the IDs [9], [10], [11], 54

computing the eigenvalues of the Laplacian of the communication 55

graph [12], exploiting Good-Turing estimators based on the number 56

of occurrences of the IDs [13], scanning opportunely the binary rep- 57

resentation of the IDs of the nodes [14], [15], borrowing concepts 58

from identification of LTI systems over finite fields [16], performing 59

opportune Gram-Schmidt orthogonalization of randomly generated 60

IDs [17], and Bayesian schemes [18]. 61

W.r.t. the estimation scheme proposed in this manuscript, all the 62

strategies above perform more complex computational operations 63

and require longer convergence times. 64

A strategy in the same playground of the one considered here 65

(i.e., with the same computational complexity and minimal conver- 66

gence time) is the basis of [19], [20], [10], [21], [22], [23], and 67

works as follows: i) let each node locally generate M random 68

IDs yi,m, m = 1, . . . ,M instead of just one ID yi; ii) make 69

nodes distributedly compute the M different maxima ymax
m = 70

maxi {yi,m}; iii) have each node estimate the network size using 71

Maximum Likelihood (ML) concepts. As it will be clear later, the 72

approach proposed in this manuscript has overall better statistical 73

performance. 74

Other strategies that are also based on the computation of order 75

statistics have been proposed in [24], [25], [26], [27]. Nonetheless, 76

the results obtained in this work are distinguished in three funda- 77

mental ways (cf. also the following statements of contributions): 78

i) the proposed point estimator is derived from approximated ML 79

concepts rather than methods of moments; ii) the proposed interval 80

estimator and the related hypothesis testing results are completely 81

novel; iii) the strategy is tailored for the case of networks of peer 82

nodes, and not for databases or other centralized applications. 83

Statement of contributions: the previously posed assumptions, 84

i.e., that each node is associated to a scalar ID yi, that nodes can 85

form and propagate lists of IDs, but that the number of yis that 86

can be propagated per transmission round is limited, introduce the 87

problem of which IDs should be selected for transmission. The 88

question is then which is the (statistically) best performing strategy 89

that satisfies to the practical requirements of i) minimizing the 90

convergence time, i.e., the number of communications to achieve 91

the final estimate; ii) leading nodes to all share an identical final 92

estimate. 93

Since stochastic selection processes would lead to stochastic 94

convergence times, we specifically consider deterministic strategies 95

that minimize the convergence time, namely the computation of 96

order statistics of the yis, i.e., the computation of their M biggest 97

and/or smallest values [28], [29], [30]. 98

The contributions of this manuscript are thus the following: 99

• motivate why it is meaningful to analyze just what can be 100

obtained computing maximum values, and neglect minimum 101

values or ranges (differences between maximum and minimum 102

values); 103

• derive and statistically characterize approximated ML point 104
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estimators of the network size that follow from approximated1

score functions;2

• derive and statistically characterize interval estimators in the3

form of statistical hypothesis tests on the network size.4

Organization of the manuscript: in Section II we collect5

the notation used throughout this text and frame the cardinality6

estimation problem in a formal way. In Section III we discuss in7

detail an iterative algorithm to distributedly compute order statistics.8

In Section IV we derive an approximated ML estimator and9

characterize its statistical performance. In Section V we consider10

how the nodes can perform statistical hypothesis testing on the11

network size. In Section VI we show the effectiveness of the12

estimation strategies by means of simulated experiments. Finally, in13

Section VII we collect some concluding remarks and discuss future14

research directions.15

II. PROBLEM FORMULATION16

Due to the iterative nature of the estimation algorithm, we17

describe the quantities of interest at discrete points in time. More18

specifically, we partition time into an ordered set of equally lasting19

intervals indexed by the integer variable t = 0, 1, 2, . . .. We20

informally refer to each of these time-intervals as to an “epoch”.21

We model the communication network as a directed, strongly22

connected and, w.l.o.g. for our findings, time-constant graph G =23

(V,E) with V = {1, 2, . . . , n}. In particular, the cardinality of24

the network is n = |V |. Communications are assumed to be25

perfect (i.e., no collisions, no delays, no information sharing errors).26

The exchange of information between nodes follows a broadcast27

communication protocol, i.e., when i ∈ V transmits, it transmits to28

all its neighbors Ni := {j : (i, j) ∈ E} simultaneously, and these29

js are not required to acknowledge the transmission.30

Nodes are assumed to be equipped with a local random number31

generator that, during initialization, draws an independent sample32

from a common absolutely continuous distribution PY (·). The33

random outcome is then stored in the local variable yi. In the34

following, we informally refer to yi as the ID of node i. The35

fictitious IDs y1, . . . , yn are thus collectively viewed as an n-36

dimensional sample with i.i.d. components extracted from PY (·).37

Importantly, we assume that when nodes communicate, they38

exchange packets containing at most M different IDs, with M fixed39

a priori and known to all the nodes. Different Ms thus trade off40

the amount of information that is locally available for statistical41

inference with the communication requirements.42

The aim of the nodes is then to reach consensus, in the smallest43

number of epochs possible, on an estimate of the network cardinal-44

ity n starting from no a priori knowledge on the network topology45

or on n itself. The purpose is thus not only to estimate effectively46

n, but also to reach, as soon as possible, agreement on the same47

estimate n̂.48

Remark 1 Each ID yi is assumed to be a real number, and we thus49

neglect in first approximation quantization issues. We nonetheless50

notice that if the set of all plausible IDs is finite, e.g., strings51

of b bits, then the probability of collisions is described by a52

generalized birthday paradox. Specifically, this probability is given53

by 1 −
∏n−1
k=0

2b−k
2b and therefore is decreasing in the number of54

bits used to encode each ID.55

III. ORDER STATISTICS CONSENSUS56

Let x(1), . . . , x(n) be the outcome of sorting the vector of initial57

IDs y1, . . . , yn in ascending order. By construction the variable58

x(m) takes the m-th smallest value in y1, . . . , yn and is called the 59

m-th order statistic. 60

Assume that the maximum number of transmittable IDs per 61

communication has been fixed through M . Then, the order statistic 62

x(n−M+1) can be distributedly computed by the network through 63

the following Algorithm 1. 64

Algorithm 1 Order statistics consensus

1: (local storage requirements) vectors ix, iw ∈ RM ;
2: (initialization of the local storage) let ix =

[
ix1, . . . ,

ixM
]

by
setting ixm = 0 for m = 1, . . . ,M − 1, and ixM = yi; let
iw = 0;

3: for each epoch t = 0, 1, 2, . . . do
4: (on epoch start, save the current local state) iw ← ix;
5: (on transmission, that happens once per epoch, and uni-

formly i.i.d. during the epoch) broadcast the current iw to the
neighboring nodes j ∈ Ni;

6: (on reception, that happens Ni times per epoch) upon
reception of jw from neighbor j, update ix by selecting and
sorting (in ascending order) the M biggest elements in ix ∪ jw.
I.e., letting ξ ∈ R2M be a temporary vector, and describing this
operation in Matlab-like pseudo-code, let

ξ ← unique
(

sort
(

stack
(
ix, jw

)))
,

ix← ξ(M+1):(2M) .

7: end for

Notice that during each epoch each node performs two basic 65

functions: i) it uses the received IDs to update its local information; 66

ii) it broadcasts his information to its neighbors. Importantly, 67

to compute x(n−M+1), the nodes are required to compute also 68

x(n−M+2), . . . , x(n). 69

We stress that the number of scalars that are broadcast by a node 70

per epoch does not grow indefinitely, but instead stays bounded by 71

the design parameter M . Moreover, nodes may skip the zero entries 72

in the current iw when transmitting, so that the length of packets 73

scales with the network cardinality up to n = M . 74

Consensus, i.e., the condition where all the nodes have computed 75

correctly x(n−M+1), is achieved at most after d epochs, with d 76

the diameter of the network. In fact, a sufficient condition for 77

achieving consensus is to that the information of any given node 78

can eventually be propagated to the rest of nodes in the network. 79

Therefore, given our strong connectivity assumptions, the local 80

states 1x, . . . , nx converge, at most after d steps, to the consensus 81

vector 82

x :=
[
x(n−M+1) x(n−M+2) . . . x(n)

]
. (1) 83

For notational brevity, in the following we let xm, 1 ≤ m ≤ M , 84

indicate the m-th component of x, so that x1 := x(n−M+1), x2 := 85

x(n−M+2) and so on. 86

Assuming then that the consensus vector (1) has been computed, 87

a node can then distinguish between two cases: 88

1) x has some zero entries: this implies that n < M , and thus the 89

cardinality of the network is given precisely by the number of 90

non-zero entries of x; 91

2) x has no zero entries: this implies that n ≥M , and thus that 92

x1 is the searched (n−M + 1)-th order statistic. This is the 93

interesting case from our statistical perspectives and gives birth 94

to the question of how to estimate n given x(n−M+1). 95
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IV. ESTIMATING CARDINALITIES USING ORDER STATISTICS1

This section leverages Algorithm 1 for the estimation of the2

cardinality of a network, and is articulated in four parts: IV-A,3

showing that to compute maxima (i.e., statistics of the kind x(n−m),4

where n is the cardinality of the network), minima (i.e., statistics of5

the kind x(m)), or ranges (i.e., combinations like x(n−m) − x(m)),6

is for our purposes equivalent; IV-B, showing that in general7

it is not possible to derive a closed-form Maximum Likelihood8

(ML) estimator for the network size n from order statistics; IV-C,9

proposing and characterizing an estimator naturally approximating10

the ML one; and IV-D, characterizing the statistical properties of11

the approximated estimator.12

A. Computing maxima, minima or ranges is equivalent for cardi-13

nality estimation purposes14

Let the initial IDs y1, . . . , yn be n i.i.d. realizations of the same15

continuous r.v. Y , i.e., let Y be described by a generic absolutely16

continuous probability distribution PY (y), so that Y admits its17

density pY (y). Define the random variables X(1), . . . , X(n) as the18

order statistics of an n-dimensional sample with i.i.d. components19

extracted from Y . We denote with x(m), 1 ≤ m ≤ M , the20

realization of X(m), so that x(m) is the m-th smallest value in21

y1, . . . , yn.22

If m1, . . . ,mM are M generic indexes s.t. 1 ≤ m1 < . . . <23

mM ≤ n, then the joint probability density of the order statistics24

X(m1), . . . , X(mM ) is [28, Eq. (2.2.2)]25

pX(m1),...,X(mM )
(x1, . . . , xM ; n) =

n!

(m1 − 1)!(m2 −m1 − 1)!(m3 −m2 − 1)! . . . (n−mk)!
· (PY (x1))m1−1 pY (x1)

· (PY (x2)− PY (x1))m2−m1−1 pY (x2)

· (PY (x3)− PY (x2))m3−m2−1 pY (x3)
...
· (1− PY (xM ))n−mM pY (xM )

(2)26

subject to
x1 ≤ x2 ≤ · · · ≤ xM .

Notice then that, given the continuity assumptions on Y , we may27

restrict Y to be (0,1)-uniform, so that pY (y) ∼ U [0, 1]. Indeed,28

it is always possible to transform any non-uniform continuous Y29

into Y ′ = PY (Y ) ∼ U [0, 1] by means of the so-called probability30

integral transform. We can thus eventually consider the equivalent31

uniform r.v. since it retains the same information content (cf. also32

Proposition 7 in [10]).33

As for the indexes m1, . . . ,mM , we notice that there are only 334

meaningful arrangements:35

1) case m1 = 1, . . . ,mM = M , so that the considered order36

statistics are X(1), . . . , X(M), i.e., the M smallest IDs. In this37

case we can observe that m1 = 1, m2 −m1 − 1 = 0, m3 −38

m2 − 1 = 0, . . ., n −mM = n −M . Thus the density (2),39

given that the y1, . . . , yn are i.i.d. realizations from a uniform40

distribution, particularizes to41

p (x1, . . . , xM ; n) =
n!

(n−M)!
(1− xM )n−M . (3)42

Since in this case xM is the M -th smallest element of43

y1, . . . , yn, it follows that xM ∼ B(M,n−M+1) with B(·, ·)44

the Beta distribution [28, Example 2.3]. Notice also that the45

structure of this joint density reflects the fact that, conditioned46

on xM , the various order statistics xm with m < M are (0,47

xM )-uniform r.v.s;48

2) case m1 = n−M + 1, . . . ,mM = n, so that the considered 49

order statistics are X(n−M+1), . . . , X(n), i.e., the M biggest 50

IDs. In this case we can observe that m1 = n − M + 1, 51

m2 −m1 − 1 = 0, m3 −m2 − 1 = 0, . . ., n −mM = 0. 52

Thus (2) particularizes to 53

p (x1, . . . , xM ; n) =
n!

(n−M)!
xn−M1 . (4) 54

x1 is now the M -th biggest element of y1, . . . , yn and, 55

similarly to the previous case, is distributed as B(n −M + 56

1,M) [28, Example 2.3]; 57

3) case m1 = 1, . . . ,mk = k,mk+1 = n − M + k + 58

1, . . . ,mM = n, so that the considered order statistics are 59

X(1), . . . , X(k) and X(n−M+k+1), . . . , X(n), i.e., the k small- 60

est and the M − k biggest IDs. Combining the observations 61

made for the two cases above, we have that in this case (2) 62

particularizes to 63

p (x1, . . . , xM ; n) =
n!

(n−M)!
(xk+1 − xk)n−M . (5) 64

Since xk and xk+1 are respectively the k-th smallest and (M− 65

k)-th biggest element of y1, . . . , yn, it follows that (again) 66

(xk+1 − xk) ∼ B(n−M + 1,M) [28, Example 2.3]. 67

Importantly, as suggested in Section III, the previous 3 cases are 68

the only meaningful ones in our distributed computations setting. 69

Indeed, to compute the M -th biggest element of a given set requires 70

the computation also of the M − 1-th, M − 2-th, etc., biggest 71

values, that can then be considered as available information when 72

the computation is ended. The same conclusion applies also for the 73

computation of the M -th smallest elements and of ranges. 74

Given that (3), (4) and (5) have exactly the same functional struc- 75

ture, estimators derived from the 3 different cases will have the same 76

statistical performance. In the remainder of this manuscript we thus 77

consider w.l.o.g. the case where the order statistics correspond to 78

computing maxima over the network. I.e., from now on we assume 79

that xM is the n-th order statistic of y1, . . . , yn or, equivalently, the 80

biggest ID in the network; xM−1 is the (n − 1)-th order statistic, 81

i.e., the second biggest ID; . . .; x1 is the (n −M + 1)-th order 82

statistic, i.e., the M -th biggest ID. 83

B. There are no closed-form expressions for the ML estimator of n 84

If n ≥M , and given (4), the joint log-pdf of x1, . . . , xM is

log
(
p (x1, . . . , xM ; n)

)
= (n−M) log (x1)+

M−1∑
k=0

log(n−k) .

The score is then 85

∂ log(p)

∂n
= log(x1) +

M−1∑
k=0

1

n− k , (6) 86

and thus, due to the Abel-Ruffini theorem, for M ≥ 5 it is 87

impossible to express the roots of (6) in closed forms. Therefore, in 88

general, there exist no closed form expressions for the ML estimator 89

nML := arg max
ñ∈{M,M+1,...}

p (x1 . . . , xM ; ñ) . (7) 90

Nonetheless nML can be efficiently computed numerically. Indeed
the right hand of (6) is strictly decreasing in n, and thus the root
can be found by exploiting global binary search procedures. In
particular, from the bounds

M

n− M
2

+ 1
2

≤
M−1∑
k=0

1

n− k ≤
M

n−M + 1



4

it follows that1

M

− log(x1)
+
M

2
− 1

2
≤ nML ≤

M

− log(x1)
+M − 1 , (8)2

i.e., the binary search for nML can always be started from an3

interval of length (M − 1)/2, irrespective of the estimand n.4

However, numerical tractability does not mitigate the fact that5

the probability density p(nML ; n) (and thus all the statistical6

performance indexes like var (nML − n)) are not expressible in7

closed forms. This lack of structure prevents a full understanding8

of the properties of the estimator, and complicates design steps9

such as choosing the design parameter M in order to meet specific10

performances requirements.11

C. The ML estimator admits a natural approximation expressible12

in closed forms13

We thus consider an alternative estimator for the cardinality of14

the network that has performance indexes that can be expressed in15

closed forms and that represents a natural approximation of the ML16

estimator (7). Let then ψ(·) be the digamma function, and exploit17

the equivalence18

M−1∑
k=0

1

n− k =

M−1∑
k=0

1

(n−M + 1) + k

= ψ(n+ 1)− ψ(n−M + 1)

(9)19

to express the ML estimator (7) as20

nML = arg max
ñ∈{M,M+1,...}

|ψ(ñ+ 1)− ψ(ñ−M + 1) + log(x1)| .
(10)21

Recalling that22

ψ(w) = H(w−1) − γ ≈ log(w − 1) , (11)23

where H(w−1) is the w − 1-th Harmonic number and γ is the24

Euler-Mascheroni constant, it follows that the score (6) can be25

approximated as26

∂ log(p)

∂n
≈ log(x1) + log(n)− log(n−M) . (12)27

In particular, the unique root of the right-hand side of (12) yields an28

approximation for the unique root of the score, and this legitimates29

n̂ = g (x1) :=
M

1− x1
(13)30

as an approximated form of nML for the case n ≥M .31

To extend n̂ so to comprise also the case n < M we then32

consider that in this latter case only n of the M order statistics33

x1, . . . , xM contain meaningful information, while the remaining34

ones are arbitrarily set to zero by Algorithm 1. Therefore, a precise35

estimate is obtained by counting the non-zero entries xm, 1 ≤ m ≤36

M . The complete estimator is thus37

n̂ =


M

1− x1
if x1 > 0

|{xm 6= 0}| otherwise,
(14)38

where |·| indicates the cardinality of a set.39

Evaluating the error nML − n̂ introduced by the approximated40

estimator is here performed through a Monte Carlo simulation for41

each couple (n,M) of meaningful dimensions (finding analytical42

and tight bounds for the approximation error is currently under43

study). The numerical analysis, which results are summarized in44

Figure 1, empirically shows that |nML − n̂| seems to be bounded45

by one unit.46
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m
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M = 200

M = 500

Fig. 1. Empirical evaluation of the approximation error nML−n̂ introduced
by estimator (14). For each couple (n,M) we consider 10000 Monte
Carlo scenarios where we run Algorithm 1, compute nML numerically,
n̂ analytically and then compute the absolute approximation error. For the
plot we then consider the maximum absolute approximation error over the
κ = 1, . . . , 10000 iterations. The index κ is omitted in the abscissas’ label
for notational convenience.

D. Statistical characterization of the approximated estimator 47

In the following we let N̂ denote the random variable associated 48

to (14). To characterize its performance in function of the design 49

parameter M we notice that if n < M then P
[
N̂ = n

]
= 1, i.e., 50

E

[
N̂

n
; n < M

]
= 1, (15) 51

52

var

(
N̂ − n
n

; n < M

)
= 0. (16) 53

For the moments E
[
N̂
n

; n ≥M
]

and var
(
N̂−n
n

; n ≥M
)

we

exploit the closed form of (13) and consider that the pdf of N̂ can
be computed from

pN̂ (n̂ ; n ≥M) = pX1

(
g−1 (n̂) ; n ≥M

) ∣∣∣∣dg−1 (n̂)

dn̂

∣∣∣∣ .
Since (under n ≥M ) X1 ∼ B(n−M + 1,M), with B indicating 54

the Beta distribution, it follows that 55

pN̂ (n̂ ; n ≥M) =
MM

Bf (n−M + 1,M)

(n̂−M)n−M

n̂n+1
(17) 56

where Bf (·, ·) is now the Beta function. Recall then that for X ∼ 57

B(α, β) and β > 2 there holds 58

E
[

1

1−X

]
=
α+ β − 1

β − 1
, (18) 59

60

var

(
1

1−X

)
=

α(α+ β − 1)

(β − 2)(β − 1)2
. (19) 61

Given the structure of g(·) in (14), for 2 < M ≤ n it thus holds 62

that 63

E

[
N̂

n
; n ≥M

]
=

M

M − 1
, (20) 64

65

var

(
N̂ − n
n

; n ≥M

)
=

M2

(M − 2)(M − 1)2

− M2

n(M − 2)(M − 1)
.

(21) 66

Since we are considering the case n ≥ M , we conclude that 67

the variance (21) enjoys a o(1/M) behavior asymptotically in M . 68

Moreover 69

var

(
N̂ − n
n

; n = M

)
=

M

(M − 2)(M − 1)2
, (22) 70
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1

lim
n→+∞

var

(
N̂ − n
n

)
=

M2

(M − 2)(M − 1)2
, (23)2

so that for n ≈ M the variance (21) is about M times smaller3

than its limit. In other words, estimator (14) exhibits the following4

feature: if n < M , then the estimate is perfect; if instead n ≥ M5

but n ≈ M , then the variance of the error behaves approximately6

as in (22); eventually, for n�M the variance of the error becomes7

about M times bigger (cf. Figure 2). We then notice the following:8
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Fig. 2. Variance of the relative estimation error (21) as a function of n and
M . As n approaches M with n ≥ M , the estimator performance sees an
M -fold improvement compared to (25). For n < M , instead, the relative
error variance vanishes.

Remark 2 The statistical performance indexes of the max-9

consensus based size estimator used as a building block in [19],10

[20], [10], [21], [22], [23] are (calling this estimator Nmax):11

E
[
Nmax
n

]
=

M

M − 1
, (24)12

13

var

(
Nmax − n

n

)
=

M2

(M − 2)(M − 1)2
(25)14

i.e., asymptotically the same of the proposed estimator N̂ when15

n � M . Therefore, the strategy proposed in this manuscript16

has overall better statistical properties, and in addition, has the17

(meaningful) property of letting nodes estimate perfectly networks18

sizes when the total number of nodes is smaller than the amount19

of shareable information. I.e., the novel estimator N̂ not only has20

a better variance, but it can also work as a perfect counter, while21

Nmax cannot.22

V. TESTING HYPOTHESES ON THE CARDINALITY OF THE23

NETWORK24

We now consider how nodes can decide if the network cardinality25

n is above (or below) a given threshold n starting from the knowl-26

edge of the order statistic x(n−M+1) computed by Algorithm 1. We27

formalize this problem in the classical statistical hypothesis testing28

framework; to maintain the paper self-contained we then summarize29

the needed theoretical background in Section V-A. In Section V-30

B, instead, we characterize the optimal decision rule and study its31

statistical power as a function of the design parameter M .32

A. Preliminaries in statistical hypothesis testing 33

(See [31], [32] and the dedicated literature for more details.) 34

A hypothesis is a statement about a parameter of a probability 35

distribution. A (deterministic) hypothesis test is a deterministic rule 36

that decides, based on observed samples, whether a given hypothesis 37

should be accepted (i.e. considered true) or rejected at a certain level 38

of significance. 39

Let {pθ}θ∈Θ be a family of parametric probability densities, X 40

a r.v. with density pθ for some unknown θ ∈ Θ, and Θ the domain 41

of the potential parameters. We assume Θ to be divided into the 42

two complementary sets (or hypotheses) 43

Hi := {x ∼ pθ with θ ∈ Θi} , i = 0, 1 (26) 44

with Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 = Θ. 45

A (deterministic) test to decide between the two hypotheses 46

in (26) is thus a deterministic function φ(x) : range(X) 7→ {0, 1} 47

that maps a generic realization of X into an integer that indicates 48

the acceptance or rejection of H0. When φ(x) selects H1 while H0 49

is true the test is said to commit an error of type I (false positive). 50

Accepting H0 when H1 is true is instead said to be an error of 51

type II (false negative). 52

To statistically characterize the effectiveness of test φ(x) it is 53

common to refer to the function 54

βφ(θ) := Eθ [φ(x)] =

∫
φ(x)pθ(x)dx , ∀ θ ∈ Θ , (27) 55

called the power function of φ, that characterizes the statistical 56

performance of φ through 57

α0(φ) := sup
θ∈Θ0

βφ(θ) , (28) 58

also called the size or level of significance of φ. The size α0(φ) 59

thus represents the worst probability of errors of type I given all 60

the possible situations for which θ ∈ Θ0. If θ ∈ Θ1, instead, βφ(θ) 61

represents the probability of not committing errors of type II for 62

that particular θ. 63

The concept of optimality for a test is then usually expressed
in terms of its power function: a test φ(·) is indeed said to be
Uniformly Most Powerful (UMP) if there exists no other test φ′(·)
that operates on the same hypotheses, has the same size (i.e., is s.t.
α0(φ′) = α0(φ)), and has a better power in the Θ1 region. In other
words, φ(·) is UMP if every other φ′(·) with the same size of φ(·)
satisfies

βφ(θ) ≥ βφ′(θ) ∀ θ ∈ Θ1 .

B. A UMP test for one-sided hypotheses on the network cardinality 64

Let now x be as in (1), and let its density be as in (4). Let the 65

hypotheses on the size of the network n be (notice that here n plays 66

the role of θ above): 67{
H0 : n ∈ Θ0 := {ν : ν ≤ n},
H1 : n ∈ Θ1 := {ν : ν > n}. (29) 68

Notice that (29) is parameterized in the deterministic value n > 69

0, representing a threshold size whose meaning depends on the 70

specific application (e.g., the minimum size of the population of 71

nodes that guarantee a certain quality of service). In this context, 72

the decision rule takes as its input the whole vector x computed 73

through Algorithm 1, and outputs either zero (i.e., H0) or 1 (i.e., 74

H1). 75

Consider then that if n < M , then the test can perfectly 76

discriminate between H0 and H1, since in this case it is possible 77

to estimate the size n perfectly. For the case n ≥ M we instead 78
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need to design the optimal (in terms of power functions) test given1

x.2

To this aim, observe that the one-parameter family of exponential3

densities (4) induces likelihood ratios of the form4

Λ(x1, . . . , xM , n1, n2,M) =
p(x1, . . . , xM ; n1,M)

p(x1, . . . , xM ; n2,M)

= xn1−n2
1

n1∏
ν=n2+1

ν

ν −M .
(30)5

As soon as n1 > n2 > 0, Λ is strictly increasing in the sufficient6

statistic x1. This monotonicity property constitutes then a sufficient7

condition that guarantees (see [32, Thm 3.4.1]) that for every8

desirable size α0 there exists a corresponding UMP test φ(x)9

structurally defined by10

φ(x1) =

{
0 if x1 ≤ λ
1 otherwise

(31)11

with λ > 0 an opportune threshold, and s.t. its size coincides with12

the test power evaluated at the frontier point n, i.e.,13

α0(φ) = βφ(n) . (32)14

In our specific case, to construct the UMP test it is thus sufficient to15

compute the corresponding threshold λ as a function of the desired16

size α0.17

Let then the desired α0 be given. Since x1 is a Beta r.v. with18

density given in (4), λ is function of the quantile function of a Beta19

r.v. More specifically, if we denote with Q(u ; a, b) the quantile20

of a generic Beta distribution B(a, b) then the optimal λ is21

λ = Q (1− α0 ; n−M + 1,M) . (33)22

Although the quantile function Q(· ; a, b) cannot be expressed23

in closed form, it admits a power series expansion that can be24

exploited to compute (33) efficiently, see, e.g., [33]. Moreover, the25

value of λ in (31) is fixed once α0 and n have been chosen and,26

therefore, it can be computed off-line and stored in the nodes before27

deployment.28

Combining the above considerations, and removing the restriction29

n ≥M , we finally obtain the following UMP rule:30

φ(x1) =


0 if either

(
n̂ < M and n̂ ≤ n

)
or
(
n̂ ≥M and x1 ≤ λ

)
,

1 otherwise.

(34)31

A graphical description of the performance of (34) is shown in32

Figure 3, where we consider n = 50 and significance levels 0.0533

and 0.01. Confirming the intuitions, once a certain choice of the size34

α0 is made, different choices of the remaining design parameter M35

lead to either poor power functions when M is very small or very36

good power functions when M is big. Indeed, increasing M leads37

to more information available for inference purposes, that translates38

into an improved test power. In general, values of M near n yield39

good performance in terms of both the variance (21) of the relative40

error of the point estimator (14) (cf. Figure 2) and of the power of41

the here discussed UMP rule.42
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10 20 30 40
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n
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M = 50

Fig. 3. The power of the UMP decision rule (34) as a function of n
and M for n = 50 and two different values for the size, α0(φ) = 0.05
for the plots in the first column and α0(φ) = 0.01 for the plots in the
second column. Notice that if n < M , then the power is one since then
(34) discriminates perfectly between hypotheses (29).

VI. NUMERICAL EXPERIMENTS 43

Before continuing we recall the concept of k-steps neighborhood: 44

given a generic node i ∈ V and k ∈ N, the k-steps neighborhood 45

of i is the set of nodes connected to i by at least one path of at 46

most k links, and that is formally defined for k = 0 as V 0
i := {i} 47

and for k ≥ 1 through the recursion 48

V ki :=
⋃

(i,j)∈E

V k−1
j . (35) 49

To show the effectiveness of the point estimator (14) and of the 50

hypothesis test (34) we consider then the following application: 51

in the tree network of Figure 4 each node aims at estimating how 52

many k-steps neighbors they have for k = 1, . . . , 6. Moreover, each 53

node aims also at deciding whether it has at least n = 100 6-steps 54

neighbors or not. 55
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Fig. 4. A balanced tree with 5 levels and a total of 121 nodes. If a node
has a darker interior then this means that it believes (through the UMP
test defined in this section) that its 6-steps neighborhood contains at least
n = 100 nodes.
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n̂
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(t

)
M = 30

2 4 6 8
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k = 1
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Fig. 5. Typical realizations of the evolutions of the estimators n̂ki (t)
of the sizes of the k-steps neighborhoods for k = 1, . . . , 4. The left
panel, corresponding to M = 30, shows average estimation errors that
are noticeably bigger than the ones committed in the right panel, for which
M = 80. Moreover, since 30 <

∣∣V 3
i

∣∣ < 80, for the right panel the
estimator of the 3-steps neighborhood works as a counting mechanism,
whereas for the left panel it does not. The horizontal gray lines indicate the
exact size of the considered k-steps neighborhoods after the initial transitory.

To solve this problem we propose to opportunely parallelize D1

instances of Algorithm 1 so that nodes can generate statistical2

information on the size of the various k-steps neighborhoods up3

to distance D (a design parameter). More specifically, we let the4

state of the generic agent i be a matrix ix ∈ RD×M and aim at5

letting the k-th column of ix aggregate information from i’s k-steps6

neighbors.7

Consider then the following scheme: i) during each epoch8

t = 0, 1, 2, . . ., node i performs the same operations described in9

Algorithm 1 but separately on each column of the new augmented10

state; ii) to accommodate the recursive step in (35), at the beginning11

of each epoch, node i shifts the columns of ix by one to the right12

(so that the old D-th column is effectively discarded), while the13

leftmost column is reinitialized with a new random ID as in step 214

of Algorithm 1.15

This mechanism allows the generic node i to produce at each16

epoch t: 1) a local estimate n̂ki (t) of the cardinality of the generic17

neighborhood V ki by exploiting (14); 2) a decision between alter-18

native hypotheses on the cardinality of the generic neighborhood19

V ki by exploiting (34).20

To address the application described above in the network of21

Figure 4, we thus let every node independently perform a statistical22

test to decide if its 6-steps neighborhood contains more than n =23

100 nodes or not. We considered M = 80 and set the level of24

significance to 0.01, thus bounding the rate of type I errors. In the25

figure, the nodes drawn in a darker color are those that set an alarm26

after evaluating the hypothesis test. Notice that all the nodes of27

the network correctly inferred whether their 6-steps neighborhood28

contains more then 100 peers.29

In Figure 5, instead, we depict two typical realizations of the30

evolutions of the estimates n̂ki (t),k = 1, . . . , 4, for the node i in31

the center of the network. Confronting the panels it is possible to32

notice the main feature of the cardinality estimator proposed in this33

paper, i.e., the fact that if
∣∣V ki ∣∣ < M , then the estimator acts as a34

counting mechanism. If instead
∣∣V ki ∣∣ ≥M , then the estimator is a35

proper estimator, in the sense that it is not perfect and its statistical36

performance depend on M as described in (21).37

VII. CONCLUSIONS 38

This paper presents a novel counting strategy that is tailored for 39

distributed networked applications and that enjoys several desirable 40

practical properties, such as bounded and fixed per-transmission 41

communication requirements, trivial computational requirements, 42

perfect precisions for small networks, and fast convergence times. 43

The structure of the computational procedure, that is based on 44

the distributed computation of order statistics, enables the derivation 45

of both point and interval estimators and their complete statistical 46

characterization. More precisely, point estimators are derived from 47

approximated Maximum Likelihood (ML) concepts, while interval 48

estimators are derived in the forms of opportune hypothesis tests 49

on the size of the underlying network. 50

For small networks the point estimator works as a counting 51

mechanism, and this represents an improvement with respect to the 52

existing literature. In particular, its statistical performance compares 53

favorably to that of a commonly used size estimation technique that 54

is based on max consensus operations and has the same convergence 55

properties (in number of communication steps). 56

The novel technique proposed here opens up several research 57

directions. We devise specially the following ones: i) studying the 58

properties of the estimators when considering discretization effects; 59

ii) finding the potential extensions that can be implemented when 60

removing the requirement that every node should have the same 61

final estimate; iii) understanding which other topological quantity 62

can be computed by nodes while running this estimation strategy, 63

and specifically understand to which degree nodes can infer who 64

communicates with whom in the network. We also devise practical 65

applications of this estimation technology, specially for change 66

detection purposes. 67
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