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Abstract: Changes in the topology of communication networks, such as sudden appearance
or disappearance of links or nodes, may signal malicious attacks or malfunctions. A topology
change detector may thus be useful to trigger alarms or self-reconfiguration procedures. Here
we present a novel approach that enjoys several desirable qualities such as fast convergence,
intrinsically distributed computations, and scalability w.r.t. communication and computational
requirements. We characterize the performance of this technique from analytical and practical
points of view, providing theoretical results on its performance. We thus show how it is possible
to tune and trade-off the accuracy of the change detection results with the communication
requirements of the procedure.
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1. INTRODUCTION

The applicability of distributed systems to real frame-
works, like in sensing, surveillance, monitoring and track-
ing (Akyildiz et al., 2002), is proportional to the amount
of direct human intervention that these systems require
for their operation. Implementing truly smart sensors and
actuators networks requires thus opportune self-diagnosis
tools, that lessen or ease maintenance tasks.
In this respect, the structure of the communication topol-
ogy is of particular importance, since it represents one of
the most affecting quantities of a distributed system (e.g.,
it limits how and how fast the information can flow among
the agents (Li and Yang, 2006)). Consider then that in
a distributed scenario it may not be convenient to rely
on a communication topology that is defined during the
design phase; it may indeed be that the network structure
needs to be inferred after the deployment phase. There
is, in fact, an active research community focusing on such
graph discovery algorithms (Parlangeli and Notarstefano,
2012; Shames et al., 2012; Sahai et al., 2012). These algo-
rithms can be used to build, on top of them, automated
topology change detectors, so that agents of a network can
discover changes in its connectivity properties and react by
triggering specialized problem-detection procedures, e.g.,
? R. Lucchese is with the Department of Information Engineering,
University of Padova, Italy. Email: lucchese@dei.unipd.it . D.
Varagnolo and K. H. Johansson are with the ACCESS Linnaeus
Centre, School of Electrical Engineering, KTH Royal Institute of
Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden. Emails:
{ damiano | kallej } @kth.se . The research leading to these re-
sults has received funding from the European Union Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement n°257462
HYCON2 Network of excellence, the Swedish Research Council and
the Knut and Alice Wallenberg Foundation.

searches for coverage or routing holes (Ahmed et al., 2005),
and, in cascade, strategies for the reconfiguration of the
network itself (Wang, 2008; Chen et al., 2002).
Our aim here is to design a topology change detector
that exploits a particular data aggregation scheme, namely
max-consensus over random vectors, that is often used
for size estimation purposes (Cichon et al., 2011; Ba-
quero et al., 2012). With this choice, the network change
detection algorithm benefits directly of several desirable
properties, namely fast propagation of the information
across the network, little memory / computational and
communication requirements, scalability, robustness w.r.t.
nodes and links failures, full parallelism (i.e., every agent
eventually computes the same estimates), and not requir-
ing a leader election step. Moreover, as it will be clear later,
the proposed technique is intrinsically robust to churn
since it continuously provides aggregated information to
all nodes.
Literature review: the detection of topological changes
can be based on comparing subsequent estimates of some
properties of the communication graph. Ideally it is thus
possible to convert each graph discovering algorithm into
a topological change detector.
There is a vast literature on graph discovering, and dif-
ferent approaches deal with different types of constraints.
A classical and intuitive strategy is to exchange tables of
IDs and from them reconstruct the whole topology (Deb
et al., 2004). These strategies can give reliable results but
are neither scalable nor distributed.
A truly distributed approach is instead to rely on random
walk techniques (Hall, 2010; Kurant et al., 2012; Massouliè
et al., 2006), i.e., on passing a token through the network.
This token collects information each time it visits an agent



through two mechanisms: either it counts how many hops
it took to return to the sender, or it counts how much time
it is required for a given counter to become zero. Statistical
properties of the return-time and time-to-vanish are then
used to infer the network size.
A third scheme is to exploit capture-recapture strategies,
i.e., disseminate a certain number of messages called
“seeds”, propagate them through the network, query some
pre-determined nodes whether they hold a seed or not and
then infer the size of the network from the number of seeds
in the set of queried nodes (Peng et al., 2009; Petrovic and
Brown, 2009; Bawa et al., 2003).
We incidentally report also a class of algorithms that
directly focus on detecting topological changes in Wireless
Sensor Networks (WSNs), that are explicitly based on
measuring geographical phenomena, e.g., wildfires (Farah
et al., 2011; Fekete et al., 2004; Jiang and Worboys, 2009).
Here, instead, we consider the more general case where
environmental or similar measurements are not available
to the change detector.
Statement of contributions: we derive a Generalized Like-
lihood Ratio (GLR)-based change detection algorithm on
top of a particular and already existing size estimation
procedure, employing the fastest distributed aggregation
mechanism existing. The proposed innovation is thus: pro-
vide the full description of the procedure in all its im-
plementation details; derive its statistical characterization
and the trade-offs between the computational / commu-
nication complexities and the detection performance; cor-
roborate the findings with numerical experiments; provide
indications and recommendations for the usage in practical
situations.
Organization of the manuscript: Section 2 collects assump-
tions and notation, recalls and summarizes basic defini-
tions on the theory on hypotheses testing, and then formu-
lates the change detection problem. Section 3 reports how
to estimate cardinalities using max-consensus protocols,
describes the change detection algorithm and motivates
our choices. Section 4 describes the statistical properties
of the change detector, analyses the existing trade-offs
between communication complexities and accuracy of the
results and shows the performance of our technique on
simulated case studies. Section 5 finally collects some con-
cluding remarks and future research directions. For ease of
readability, all the proofs are collected in the appendix.

2. ASSUMPTIONS, NOTATION AND PROBLEM
FORMULATION

In the following, we consider the simplified framework
where the effects of packet losses and quantization issues
can be neglected. Moreover, we assume the following com-
munication protocol: time is divided in epochs, indexed by
t = 0, 1, 2, . . .. Every agent broadcasts its information ex-
actly once per epoch. The order of the broadcasting opera-
tions is irrelevant, and can change in time. When an agent
broadcasts its information, it broadcasts the information
that it had at the beginning of the epoch.
Notice that the time index t does not measure a physical
quantity (e.g., seconds), but rather the index of the various

epochs, the latter defined as the time necessary to let all
the agents communicate exactly once.
With reference to the information generation scheme dis-
cussed later we denote by

{
G(t) :=

(
V(t), E(t)

)}
the se-

quence of network graphs associated to the execution of
Algorithm 1. V(t) represents the set of active agents at
time t. E(t) ⊆ V(t) × V(t) represents the set of commu-
nications among active agents at time t (as described in
step 3 of Algorithm 1): (i, j) ∈ E(t) indicates that in period
t agent i successfully broadcasts its information to j. For
notational simplicity, we will often identify agents with the
fictitious indexes i and j.
The set of k-steps neighbors of agent i at time t is defined
for k = 0 as V(i)

0 (t) := {i} and, for k ≥ 1, through the
recursion

V(i)
k (t) :=

⋃
(i,j)∈E(t)

V(j)
k−1(t− 1) . (1)

A pictorial representation of k-steps neighborhoods is
given in Figure 1.

i

Fig. 1. Example of k-steps neighborhoods. Assuming a
time-invariant network, it holds that V(i)

1 is given by
i and all the nodes . V(i)

2 , instead, comprises V(i)
1

and all the nodes .

In the following the cardinality of V(i)
k (t) is denoted by

S
(i)
k (t).

2.1 Notation on hypothesis testing

Let bold fonts indicate vectors, plain italic fonts indicate
scalars and capitalized plain italic fonts indicate matrices.
We denote by either p(x ; θ) or pθ(x) the probability
density of the random variable (r.v.) x parametrized by
the scalar θ. `(θ ; x) is the likelihood of θ given x. Consider
two complementary hypotheses, H0 and H1, on how a r.v.
f has been generated, of the form
Hi = {f ∼ pθ with θ ∈ Θi} , i = 0, 1, Θ1 = Θc

0
where ·c denotes complementation. Selecting H1 when H0
is true is said to be an error of type I. Conversely, accepting
H0 when H1 is true is said to be an error of type II. Let
the selection between H0 and H1 be performed through
a deterministic function g(f) with range {0, 1}. g thus
partitions the space of the plausible outcomes for f in
two regions: the acceptance region R := {f s.t. g(f) = 0}
and the critical region Rc. The function

βg(θ) := P [f ∈ Rc ; θ] (2)
is called the power function of g. This map characterizes
the statistical performance of g through

α0(g) := sup
θ∈Θ0

P [f ∈ Rc ; θ] , (3)

called the size of g, namely the worst probability of errors
of type I given all the possible instances of θ ∈ Θ0. If



θ ∈ Θ1, instead, βg(θ) is the probability of not committing
errors of type II for that particular θ.
For details see, e.g., (Basseville and Nikiforov, 1993;
Lehmann and Romano, 2005).

2.2 Problem formulation

Assume that the agent i and the neighborhood of interest
k are given, and consider the finite time horizon t −
N, . . . , t, with N fixed. We formulate the problem of de-
tecting topological changes over this finite window of time
(dropping here for notational simplicity the subscripts and
superscripts), as the one of discerning between the two
composite hypotheses
H0 : S(t−N) = . . . = S(t− T ) = S,

S(i) ≥ σS for all i ∈ {t− T + 1, . . . , t}

H1 : S(t−N) = . . . = S(t− T ) = S,
exists i ∈ {t− T + 1, . . . , t} s.t. S(i) < σS

(4)

The change detection hypotheses are thus parametrized
both in T ∈ {1, . . . , N} and in σ, S ∈ R+. The interpre-
tation is the one of testing a trend of decrease for the k-
steps neighborhood size S(t), with the change amplitude
dominated by the parameter σ ∈ (0, 1). Specifically, H0
corresponds to a nominal operating condition, while H1
describes the disconnection of nodes in the given neigh-
borhood.
The change detection hypotheses involve thus the post-
change values and 3 parameters, the pre-change value S,
the jump amplitude σ and the time of change T .

3. A NEW ALGORITHM FOR THE DETECTION OF
TOPOLOGICAL CHANGES

Intuitively, detecting changes in the size of k-steps neigh-
borhoods can be done by continuously estimating it and
inspecting the temporal evolution of the estimates. The
aim of this section is to demonstrate how this is possible
by cascading some statistical inference tools with a Gen-
eralized Likelihood Ratio (GLR) approach.

3.1 Continuous estimation of topological properties

We propose to continuously estimate a given neighborhood
size by exploiting a probabilistic counting algorithm that
is based on max consensus and works as follows. Let each
agent i be endowed with a time-varying matrix F (i)(t) ∈
RM×D, where the dimensions M and D are fixed a-priori,
and t denotes the epoch index. For notational brevity, we
let f

(i)
k (t) denote the k-th column of F (i)(t), and f (i)

m,k(t)
the element in the m-th row and k-th column of F (i)(t)
(k = 1, . . . , D, m = 1, . . . ,M). Let then agents exchange
information as in Algorithm 1.
Since the communication protocol in Section 2 makes
the agents broadcast the F (i)(t) they computed at the
beginning of the loop, and not after the max-consensus
performed in Equation (5), f

(i)
k (t) aggregates informa-

tion exactly from the agents in the k-steps neighborhood
V(i)
k (t). It follows from (Varagnolo et al., 2010) that the

Maximum Likelihood (ML) estimator of S(i)
k (t) is given by

Algorithm 1 Information generation scheme
1: for t = 1, 2, . . . do
2: (Information Update) each agent i computes
F (i)(t) by shifting the columns of F (i)(t − 1), in the
sense that f

(i)
k (t) = f

(i)
k−1(t − 1) for k = 2, . . . , D.

f
(i)
1 (t) is instead filled withM new i.i.d. random values
f

(i)
m,1(t) ∼ U [0, 1], m = 1, . . . ,M ;

3: (Communication) every agent broadcasts F (i)(t) to
its neighbors;

4: (Information Mixing) every agent updates its
F (i)(t) by means of the F (j)(t)’s received from its
neighbors. More specifically, if Ni(t) is the set of the
neighbors j from which i received information, then

f
(i)
m,k(t)← max

j∈Ni(t)

(
f

(i)
m,k(t),

{
f

(j)
m,k(t)

})
(5)

for m = 1, . . . ,M , k = 1, . . . , D.
5: end for

Ŝ
(i)
k (t) :=

(
− 1
M

M∑
m=1

log
(
f

(i)
m,k(t)

))−1

=
(
χ

(i)
k (t)

)−1
,

(6)

where χ(i)
k (t) ∼ Gamma

(
M,
(
MS

(i)
k (t)

)−1
)

1 .

Moreover (consequence that will be useful later) if t1 : t2
stands for t1, t1 +1, . . . , t2, then, under the hypothesis that
S

(i)
k (t) remains constant at times t ∈ {t1 : t2}, its ML

estimator is

Ŝ
(i)
k (t1 : t2) =

(
1

t2 − t1 + 1

t2∑
t=t1

χ
(i)
k (t)

)−1

.

3.2 The change detection algorithm

Assume w.l.o.g. to focus on a particular agent i and
neighborhood k, so that for notational brevity we can
drop all the superscripts (i) and subscripts k, and indicate
f

(i)
k (t) with f(t), χ(i)

k (t) with χ(t), V(i)
k (t) with V(t) and

S
(i)
k (t) with S(t).

Consider again the hypotheses H0 and H1 defined in (4)
with σ and N fixed. The previous estimation algorithms
lead thus to the following Algorithm 2, to be executed for
every t in Algorithm 1. The change detection algorithm
works as follows: start by computing, for all the plausible
change times, the ML estimates of the pre-change and of
the post-change values under no constraints and under
hypothesis H0 (Equations (7), (8) and (9) respectively).
Then compute all the possible GLRs in (10), from which
it is possible to estimate the most likely change time in (11)
and thus decide between the hypotheses in (12).
Notice that the thresholds λT , T ∈ {1, . . . , N − 1},
implicitly define the power of the hypothesis test, and
should be chosen according to the desired size α0. How
to compute the test thresholds is the next subject of our
discussion.
1 We denote by Gamma (a, b) the distribution of a gamma r.v. with
shape a and rate b.



Algorithm 2 Neighborhood size change detection
(cycle on all the plausible change times)

1: for T = 1, . . . , N − 1 do
2: (estimation of the pre-change value)

S(T ) =
(

1
N − T + 1

t−T∑
τ=t−N

χ(τ)
)−1

(7)

3: for τ ∈ {t− T + 1, . . . , t} do
4: (estimation of the post-change values under no

hypotheses and under H0)
Ŝ(τ) = χ(τ)−1 (8)

Ŝ0(τ) =
{
Ŝ(τ) if Ŝ(τ) ≥ σS(T )

σS(T ) otherwise
(9)

5: end for
6: (computation of the log-GLR)

Λ(T ) = M

t∑
τ=t−T+1

log
(
Ŝ0(τ)
Ŝ(τ)

)
−
(
Ŝ0(τ)− Ŝ(τ)

)
χ(τ)

(10)
7: end for
8: (computation of the optimal change time)

T = arg min
T ∈{1,...,N−1}

Λ(T ) (11)

9: (decision between H0 and H1)

g
(
f(t−N : t)

)
=
{

0 if Λ(T ) ≥ λT
1 otherwise. (12)

4. CHARACTERIZATION OF ALGORITHM 2

Here we derive the statistical properties of the change
detection rule (12). We start by stating formally its the-
oretical performance as a function of the thresholds λT
and then, to confirm the theoretical findings, we apply the
change detector to two simulated case studies.

4.1 Statistical properties

In the following we assume that S and T are fixed
deterministic parameters. We want to derive the statistical
characterization of the test power function βg(θ) defined
in (2). To this aim, we notice that g depends on the test
thresholds λT in (12), and that these are in turn function
of the desired test size α0, defined in (3).
Although the map from α0 to the thresholds λT has no
closed-form expressions, it can nonetheless be evaluated
through an opportune numerical procedure:
Proposition 1. Let α0 be the desired size of the test defined
in Algorithm 2. Then λT in (12) can be computed as a
function of α0 by means of Algorithm 3.

The dependence of the test thresholds λT on the change
times T is highlighted in step 5 of Algorithm 3. We also
notice that these thresholds do not depend on the actual
value of σS. This mirrors the fact that the test checks
for relative variations in amplitude of the network rather
than for absolute variations. I.e., the test checks whether
the total size diminished by, e.g., one fifth rather than 20
units.

Algorithm 3 Computation of the thresholds λT
1: compute

q1 = 1− Γ (M,M)
Γ (M) (13)

where Γ (a, b) is the upper incomplete Gamma function
and Γ (a) is the Gamma function

2: set p1 (a) to be the probability density of a Gamma
random variable with shape M and scale M−1 (i.e.,
Gamma

(
M,M−1)) for a ∈ (0, 1]

3: compute p2 (a) as
p2 (a) = p1

(
−W

(
−ea−1))W ′ (−ea−1) ea−1

4: set pν (a) as the mixed probability density and mass
function of the novel r.v.

ν =
{

1 with mass q1
a ∈ (0, 1) with density p2 (a) /q1

5: compute the mixed probability density and mass func-
tion of the novel r.v. ω as

pω (·) =
T times︷ ︸︸ ︷

pν (·) ∗ · · · ∗ pν (·),
where ∗ denotes convolution (c.f. von Lanzenauer and
Lundberg (1974))

6: compute the quantile function of ω, say F−1
ω (·)

7: compute λT as λT = F−1
ω (α0)

We now proceed to study the dependency of the power
function βg(θ) onM , i.e., the trade-offs between the proba-
bility of errors of type I and II (the power function) and the
communication bandwidth requirements (the number of
random numbers to be generated M , that is proportional
to the packets size). The aim of this analysis is to provide
directions on how to choose M , i.e., the number of r.v.’s
that should be generated for each epoch in Algorithm 1,
in order to achieve the desired error rates.
Let then α0 (the worst probability of type I errors) and σ
(the amplitude of the variations considered interesting) be
given. Due to the multidimensionality of the parameters
space it is not possible to analytically describe the whole
βg in (2) as a function of M and the realization S(t−T +
1), . . . , S(t). We thus characterize the following reduced
power function, where for notational simplicity we omit
the dependencies on σ, S, α0 and T :

βrg (κ,M) := βg
([
κσS, . . . , κσS

]
; M

)
= P

[
f(t− T + 1 : t) ∈ Rc ; κσS

]
.

(14)

In (14), κ describes the amplitude of the jump. Although
βrg (κ,M) cannot exhaustively represent the performance
of the test, nonetheless it gives indications about the
considered trade-offs.
The computation of βrg resembles the computation of the
thresholds λT and, as before, does not rely on closed-
form expressions but rather on a opportune numerical
procedure:
Proposition 2. The reduced power function βrg (κ,M) de-
fined in (14) can be evaluated by means of Algorithm 4.

By construction, βrg depends only on κ. Its behavior is
shown in Figure 2.



Algorithm 4 Computation of βrg (κ,M) (σ, α0 and T
given)

1: compute
q1 = 1− Γ (M,κM)

Γ (M)
as in step 1 of Algorithm 3

2: set p1 (a) to be the probability density of a Gamma
random variable with shapeM and scale (κM)−1 (i.e.,
Gamma

(
M, (κM)−1)) for a ∈ (0, 1]

3: perform steps 2 - 3 - 4 - 5 - 6 of Algorithm 3 (in
step 6 compute the cumulative distribution Fω (·)
rather than the quantile function F−1

ω (·))
4: compute

βrg (κ,M) = Fω (λT )
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Fig. 2. Dependence of βrg (κ,M) defined in (14) on κ andM
for various cases of α0, T . Given κ < 1, 1− βrg (κ,M)
describes the probability of committing type II errors
(i.e., false negatives).

Notice that, given (4), κ < 1 implies to be considering
H1, so that βrg returns the probability of not committing
type II errors (or, equivalently, 1−βrg is the probability of
committing false negatives). As expected, the probability
of committing type II errors is inversely proportional with
M , T and the size α0, and directly proportional with κ.
We remark that the quick decay of 1 − βrg with M is
independent of the actual sizes and number of links in
the various neighborhoods of the network.

4.2 Performance in synthetic networks

We now analyze the performance of the algorithm in
simulated networks. We notice that, from an algorithmic

point of view, in step 1 of Algorithm 2 and in (11) we
change the condition T ∈ {1, . . . , N − 1} with

T ∈ {1, . . . , N −N}, N > 1 (15)
so that the estimation of the pre-change value is less
sensitive to outliers (i.e., we avoid to compute those es-
timates (7) for which there is little information available).
We focus our attention on the 2 following scenarios:

Clustered networks The first example, see Figure 3a, is
a network formed by three cliques, each of six nodes,
connected by hubs. Initially all the nodes are active and
run Algorithm 1 and Algorithm 2 in parallel. Then, at
time t∗, an hub fails, drastically changing the topology of
the network (e.g., the pre-change diameter is 3, the post-
change 5).
Figure 3a shows the evolution of the alarms generated by
the various nodes in a typical realization of the change-
detection algorithm. White nodes are nodes that have not
detected changes. Colored nodes instead are nodes that
detected some changes: more precisely, the number inside
the circle indicates the smallest neighborhood for which
changes have been detected. E.g., in Figure 3a, at the end
of epoch t∗ + 1, every node in the whole upper clique has
detected a change in its 1-step neighborhood. Although
not shown in the figure, we notice that the nodes remain in
alarmed states for approximatively N epochs, i.e., the time
period for which pre-change information is still available
in the node.

Grid networks The second example, see Figure 3b, is a
2 dimensional grid. As before, initially all the nodes are
active and run Algorithm 1 and Algorithm 2 in parallel.
Then, at time t∗, some communication links fail, letting
the communication graph resemble now a comb.
As time passes, the nodes in the teethes of the comb
(for which the sizes of the various k-steps neighborhoods
have drastically changed) start recognizing the change. As
expected, instead, the nodes in the handle of the comb do
not detect the topological modification.

5. CONCLUSIONS

We presented a network topology change detection tech-
nique that relies on synchronous communications assump-
tions and max consensus protocols. More specifically, the
algorithm exploits statistical size estimation techniques
that are intrinsically and naturally distributed.
The method requires the user to set just two nominal pa-
rameters, i.e., the amplitude of the changes to be detected
and the worst probability of errors of type I accepted. All
the other parameters are estimated either off-line or on-
line, thus making the strategy easy to be used in real ap-
plications. Moreover the algorithm exploits max-consensus
communication protocols, the fastest information aggrega-
tion scheme, and thus addresses situations where the speed
of detection is crucial.
The strategy has been shown to be effective in detecting
changes in communication networks, and this suggests to
continue paying efforts to improve it. More specifically,
we suggest to remove synchronousness assumptions and to
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(a) change detection in a simulated clustered network where at time t∗ a hub fails. Here α0 = 0.01, M = 100, σ = 0.9, N = 20 and
N = 5.

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

00

0

0

0

0

00

00

t∗ − 1

0

0

2

0 0

1

0

0

0

2

2

1

0

0

0

000

0

0

2

1

0

0

0

0

01

1

0

1

0

22

00

t∗ + 1

2

0

2

0 0

1

0

0

0

2

2

1

0

0

0

000

3

0

2

1

2

0

0

0

31

2

0

1

0

22

00

t∗ + 2

2

0

1

0 0

1

5

0

2

2

1

1

0

4

4

000

3

0

2

1

2

4

2

0

31

1

0

1

0

22

00

t∗ + 3

2

0

1

0 0

1

4

0

2

2

1

1

0

3

3

000

3

0

2

1

2

3

2

0

31

2

0

1

0

22

00

t∗ + 4

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0

000

0

0

0

1

0

0

0

0

00

0

0

1

0

00

00

t∗

(b) example in a simulated grid network where at time t∗ a set of communication links fail. Here α0 = 0.01, M = 100, σ = 0.9, N = 20
and N = 5.

Fig. 3. Experiments on two simulated networks. White nodes indicate agents that have not detected changes. Colored
nodes instead indicate agents detecting a change in at least one of their k-steps neighborhoods (the number indicates
the smallest neighborhood for which the agent detected a change).

extend it to detect changes of other aggregated quantities,
like networks diameters, radii and eccentricities. Moreover
we believe that it will be beneficial to implement it
in real testbeds, e.g., in transportation systems, and to
combine this change detector with opportune network
reconfiguration strategies.
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APPENDIX

The proof of 1 requires the following lemmas, provided
without proof due to space constraints.
Lemma 3. Consider g in (12) as a function of the
T -dimensional vector [S(t− T + 1), . . . , S(t)], with each
scalar component in R+. Then for any τ ∈ {t−T+1, . . . , t}
and fixed S(t−T + 1), . . . , S(τ − 1), S(τ + 1), . . . , S(t) the
power of
g
(
S(t− T + 1), . . . , S(τ − 1), S(τ), S(τ + 1), . . . , S(t)

)
is strictly monotone decreasing with S(τ).
Lemma 4. The size of test (12) can be computed by
evaluating the power βg at the boundary σS̄, i.e.,
α0 = βg

(
S(t−N : t−T ) = S, S(t−T+1 : t) = σS

)
. (16)

Lemma 5. Let y = f(x) = 1 − x + log x. Then f−1(y) =
−W

(
−ey−1) where W (·) is the Lambert W -function,

i.e., the family of functions implicitly defined by z =
W (z)eW (z).

Proof. (of Proposition 1) The aim of the proof is to find
a numerical procedure that allows the user to compute λT
once α0 has been fixed. Let

η(τ) := χ(τ)Ŝ0(τ) ,

ω(τ) := M
(

log
(
η(τ)

)
− η(τ) + 1

)
,

ω :=
t∑

τ=t−T+1
ω(τ) .

(17)

Notice that all these quantities are mixed r.v.’s: η(τ) is
discrete in 1, so that ω(τ) is discrete in 0. With these

definitions it follows that once the desired size α0 has been
fixed, λT in (12) is implicitly defined by

P
[
ω < λT ; σS

]
= α0 .

Since the various f(τ)’s are i.i.d., also the ω(τ)’s are
i.i.d. Moreover, the mixed density and mass function of∑t
τ=t−T+1 ω(τ) can be computed as the T -fold convolu-

tion of p (ω(τ)), see (von Lanzenauer and Lundberg, 1974).
Now notice that the continuous part of each ω(τ) in differ-
entiable as a function of η(τ) in R+ and that also its inverse
is differentiable (by Lemma 5). Since the distribution of
η(τ) is known, that of ω(τ) can be computed in the
usual manner as the sum of its mass and density parts.
Specifically for the discrete part of η(τ) one has

q1 := P
[
η(τ) = 1 ; σS

]
= P

[
Ŝ(τ) ≥ σS ; σS

]
,

where Ŝ(τ) is distributed as Inv-Gamma
(
M,MσS

)
(Varag-

nolo et al., 2010). Since the cumulative distribution func-
tion of a r.v. x ∼ Inv-Gamma (a, b) is given by

P [x ≤ c] = Γ (a, b/c)
Γ (a) ,

where the numerator is the upper incomplete gamma
function and the denominator is the gamma function, it
follows

q1 = 1− Γ (M,M)
Γ (M) . (18)

As for its continuous part, since η(τ) = σSŜ(τ)−1

and Ŝ(τ)−1 ∼ Gamma
(
M,
(
MσS

)−1), it follows that
η(τ)|η(τ) ∈ (0, 1) ∼ Gamma

(
M,M−1). The uncondi-

tioned η(τ) has thus its density in (0, 1) equal to
Gamma

(
M,M−1) /q1, with the normalization factor q1

accounting for the discrete component.
It is thus possible to compute the mixed density and mass
of η(τ) and then compute back all the previous quantities,
as proposed in Algorithm 3.

Proof. (of Proposition 2) This proof shares the same
architecture of the one of Proposition 1. The unique
difference is in the mixed density and mass function of
the r.v. η(τ).
Given κ, its discrete part can be computed consider-
ing that Ŝ(τ) ∼ Inv-Gamma

(
M,MκσS

)
, that q1 =

P
[
Ŝ(τ) ≥ σS ; κσS

]
, so that

q1 = 1− Γ (M,κM)
Γ (M) .

Its continuous part instead can be computed considering
that η(τ) = σSŜ(τ)−1, Ŝ(τ)−1 ∼ Gamma

(
M,
(
MκσS

)−1),
so that η(τ)|η(τ) ∈ (0, 1) ∼ Gamma

(
M, (κM)−1). The

unconditioned η(τ) has thus its density in (0, 1) equal to
Gamma

(
M, (κM)−1) /q1, with the normalization factor

q1 again accounting for the discrete component.


