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Abstract— Electromyography (EMG) signals represent the
electrical activation of skeletal muscles and contain valuable
information about muscular activity. Estimation of the joint
movements by using surface EMG signals has great importance
as a bio-inspired approach for the control of robotic limbs and
prosthetics. However interpreting surface EMG measurements
is challenging due to the nonlinearity and user dependency of
the muscle dynamics. Hence it requires complex computational
methods to map the EMG signals and corresponding limb
motions. To solve this challenge we here propose to use an
integrated EMG signal to identify the EMG-joint angle relation
instead of using common EMG processing techniques. Then we
estimate the joint angles for elbow flexion-extension movement
by using an auto-regressive integrated moving average with
exogenous input (ARIMAX) model, which takes integrated
EMG measurements as input. The experiments showed that
the suggested approach results in a 21.85% average increase in
the estimation performance of the elbow joint angle compared
to the standard EMG processing and identification.

I. INTRODUCTION

Musculoskeletal modelling has a great potential to con-
tribute to a better understanding of human movement and
to lean in significant improvements in various clinical and
engineering applications. Specifically, personalized muscu-
loskeletal models are useful for medical purposes, such as
diagnosis of muscle injuries and disorders [1]. Personalized
models for patients can also provide valuable information
about their muscular conditions and help in designing treat-
ments. However building and training personalized muscular
models is a challenging task. In all these application areas,
the common existing need is for accurate and efficient tools
that operate in a simple, fast and cheap manner.

As depicted in Figure 1, training musculoskeletal models
means to identify the interactions between neuromuscular
activation levels and the induced musculoskeletal forces.
However this requires: a) direct measurements of efferent
nerve pathways, something that can be impractical or even
impossible; b) measuring muscular architectures and forces,
something that can be cumbersome, since it requires complex
setups.

Instead of performing the previous a) and b) approaches,
one may approximate activation levels with EMG measure-
ments, and forces with joint angles, as suggested in Figure 2.
This way of operating is usually referred to as EMG-driven
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Fig. 1: Schematics of the transformation from muscular
activation levels into muscular force.

modelling, a subject that has gained big importance in
musculoskeletal research.
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Fig. 2: General setting for performing modelling of muscles.

Before expressing our contributions, we review some
literature dedicated to the EMG-driven modelling. We start
our review by considering that this modelling identify works
by identifying the muscle dynamics through measurements
of the muscle activity and estimation of either the muscu-
lar force or the corresponding joint angle. This modelling
scheme usually consists of two steps: 1) initial EMG pre-
processing (following recommendations such as in [2]), and
2) identification of the muscle dynamics.

As schematized in Figure 2, step 2) can be performed
by using either parametric (such as Hill’s muscle models)
or non-parametric approaches (such as machine learning
techniques). An example of a parametric approach is in [3],
where the authors used Hill’s muscle models to estimate
the muscular force as a function of muscle length and
contraction velocity; the results are here a dynamic model
of the forearm and wrist parts of the user’s upper limb,
information consequently used to estimate the elbow joint
angle. The same authors identified in [4] the dynamics of
elbow joint angles from EMG measurements by combining
system identification tools with hand-trajectory correction
algorithms based on the human motion laws. An example of
a non-parametric approach relating EMG signals with joint
angles are instead [5], [6], dealing with neural network map-
pings; [7], proposing fuzzy systems technologies; and [8],
[9], exploiting non-parametric classification techniques.

The techniques cited above suffer nonetheless of some
drawbacks: analyses based on parametric Hill’s models suffer
of a large number of user-dependent parameters, plus of
requiring knowledge on the dynamics of the muscle’s force-
length and force-lengthening velocity relations. E.g., [3],



[4] required correcting the information from the motion-
trackers to reduce the elbow joint angles estimation error.
Analyses based on machine learning techniques, instead,
require training sets defined over a predefined (and thus
limited by definition) set of movements.

We thus aim at defining a new way of performing para-
metric EMG-driven identification that avoids the problems
stated before, and that stem from the fact that integrated
EMG has a relation with the muscular force production that
is approximately linear [10]. This fact indeed suggests that
also the model “integrated EMG-joint angle” is linear –
something that opens up the possibility of using ARIMAX
models for learning purposes.

In this paper we thus study this approach, and verify its
generalization capabilities through dedicated experimental
results. We thus show that using our integrated EMGs
approach leads to a simple model of the joint movements
with improved accuracy as 21.85% on average in estimating
the joint angles, and this without the necessity of training a
pre-specified set of movements or introducing a large number
of user-defined parameters.

The rest of the paper is organized as follows. Section II
introduces the proposed data preparation and system identifi-
cation methodology. Section III describes the human experi-
ments and simulation results of elbow joint angle estimation
based on surface EMG measurements. Section IV finally
contains the concluding remarks and the directions for future
work.

II. METHODOLOGY

We estimate the elbow joint angle during lower arm flexion
and extension movements by relating the EMG measure-
ments to the elbow joint angles. The upper arm and the
wrist joint are assumed to be fixed during the movements
for simplicity. Hence, we assume that the only muscle
that is responsible for the elbow flexion/extensions is the
biceps brachii. In the first step we then obtain the EMG
measurements from the biceps brachii and the elbow joint
angles. We then model the EMG-joint angle dynamics by
using the processed EMG and the joint angles as input and
output, respectively. In the following subsections we describe
the data processing and modelling methods in more details.

A. Preliminary Data Processing

A common approach to analyse the EMG signal prior to
the muscle modelling consists of a high pass filter with a
cut-off frequency of 30 Hz, rectification and a low pass filter
with cut-off frequency (fcut) between 6−2 Hz depending on
the speed of movements and normalization to the Maximum
Voluntary Contraction (MVC) [11]. The high pass filter
removes the motion artifacts and the baseline noise. Then the
EMG signal is rectified and a low pass filter is implemented
to both EMG and kinematic data.

This filtering operation has been controversial since the
EMG signals contain information in [10, 400] Hz bandwidth,
which indicates that this scheme could lead to an incomplete
interpretation of the signals and result in a loss of valuable

information for the modelling purposes [12]. For the final
step, maximum amount of force that a participant can
produce, in a specific muscle during an isometric exercise
was measured. Each EMG measurement taken from the
participant’s muscle was normalized according to the MVC,
which resulted in a reference amplitude that allowed the
EMG to be expressed as a percentage of this amplitude.
However, it is well known that muscle force depends on
the muscle length and the lengthening velocity. Therefore,
the normalization of the signal to MVC was proven in [13]
to be inaccurate, when isokinetic contraction occurred in the
muscle during the experiments, which is usually the case
to estimate the joint movements. Moreover it is important to
remove the trends in the data prior to the modelling, since the
EMG is a nonstationary signal. Consequently, this processing
approach exhibited various drawbacks that could decrease
the accuracy of joint movement estimations based on EMG
measurements.
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Fig. 3: A flow chart representing the suggested joint move-
ment estimation based on processed EMG.

It has been reported in the literature that the relationship
between the EMG signals and the muscular force can be
approximated as linear. In this article we investigate if
identifying linear models using integrated EMG as inputs
leads to increase the accuracy of the estimation of joint
angles. For this purpose, we rectified the EMG signal u(t)
and integrated over the whole interval [t0, tf ], i.e., set:

ui(t) =

∫ tf

t0

|u(t)|dt (1)

where ui(t) represents the integral of the absolute value of
the EMG signal. Moreover, removal of trends prior to the
system identification has been important in the presence of
unknown disturbances in the data [14]. Hence, polynomial
fitting has been used to remove the trends in the EMG signal
by fitting the data to a polynomial u∗(t) of degree n, i.e.,
by setting:

u∗(t) = p1t
n + p2t

n−1 + . . .+ pnt+ pn+1 (2)

where the coefficients of the polynomial are denoted as p =
[p1, p2, . . . , pn+1]. Subtracting the polynomial u∗(t) from
the integrated EMG ui(t) then results in the detrended signal:

ũi(t) = ui(t)− u∗(t). (3)

In a similar approach, the mean from the angle data has
been removed. Then the EMG signal and the joint angles



were filtered with a zero-lag 2nd order low pass filter with
a cut-off frequency 1 Hz in order to remove the noise and
modelling errors. The resulting data set for modelling the
musculoskeletal dynamics consisted of previously recorded
and processed EMG and joint angles. Estimation of the joint
movement was based on the obtained model, which took raw
EMG measurements as input (illustrated in Figure 3). Fig-
ure 4 depicted a typical form of EMG signal measured from
biceps brachii, corresponding integrated EMG signal, which
was acquired using the approach described above and the
processed joint angle.
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Fig. 4: a) Raw EMG signal measured from biceps brachii
during elbow flexion/extension, b) Processed EMG signal,
c) Processed elbow joint angle.

B. EMG to Joint Angle Estimation
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Fig. 5: A two-link representation corresponding to the upper
and the lower arm and to the shoulder (S) and elbow (E)
joints of the human body. H represents the hand.

Modelling the muscle dynamics is the problem of de-
riving analytical rules relating the muscle activation to the
movement of the corresponding joint, while surface EMG
signals provide a measure for the muscle activation. Muscle
activation signals and EMG are related as:

u(t) = φ(a(t)) + v(t) (4)

where φ represents a function relating the neuromuscular
activation signal a(t) to the measured EMG values and v(t)
is the measurement noise. Moreover, muscular force and
activation EMG are related as:

F (t) = H(a(t)) = H(φ−1(u(t)− v(t)))
≈ H(φ−1(u(t)) + w(t)

(5)

with H to represent a muscle model, where the input and the
output are the processed EMG signal u(t) and the muscle
force F (t), respectively, while w(t) denotes the modelling
errors. Similarly, muscle torque can be related to the joint
angle measurements as:

T (t) = F (t)l(θE) (6)

where T (t) is the corresponding torque on the joint and l
is the length of muscle moment arm depending on the joint
angle θE . In case the muscle torque (or force) measurements
are not possible or impractical, joint angle can be mea-
sured to relate the muscular activation and joint movements.
Therefore the musculoskeletal activity in the joint can be
considered as a system in which the EMG signal and the
joint angles are input and output, respectively.

Rather than determining the structure and estimating the
parameters of this system, modelling based on input-output
data, i.e., system identification can be implemented [14]. This
approach has been widely used in the literature because of
its performance and simplicity. A general tool in system
identification is auto-regressive moving average with exege-
nous input (ARMAX) modelling. In cases where data show
evidence of non-stationarity including an initial differencing
step reduces the non-stationarity and yields an ARIMAX
model. In order to address the non-stationarity of EMG,
the processed EMG and joint angle data were related in an
ARIMAX model structure such as:

A(q)y(t) = B(q)ũ(t− nk) +
C(q)

1− q−1
e(t) (7)

where y(t) represented the output as elbow joint angle, ũ
the processed EMG signal, nk input delay, e(t) the model
disturbance and the model coefficients:

A(q) = 1 + a1q
−1 + . . .+ anaq

−na

B(q) = b1 + b2q
−1 + . . .+ bnbq

−nb+1

C(q) = 1 + c1q
−1 + . . .+ cncq

−nc+1
(8)

Model order selection: It is required to determine the
orders of the mathematical model na, nb, nc and the input
delay nk given by 7 and 8. We chose the model orders so to
minimize the Akaike Information Criteria (AIC) index [15].
The coefficients of the polynomials in 8 were estimated
through minimization of a quadratic prediction error criterion



in Matlab.

III. EXPERIMENTS

A. Subjects and Setup

We estimated the elbow joint angles during elbow flexion
and extension of the lower arm. Four healthy participants,
two women and two men 27 to 44 years old, of different
stature and strength, participated in the experiments. During
the experiments the participants were told to keep their upper
arm fixed and only move their lower arm. The participants
had full range of motion of the elbow joint and repeated
the movements carrying a weight. The weight for each
participant was chosen proportional to the maximum force,
which was produced during the MVC in order to stimulate
the muscles of the participants proportional to their strengths.
The experiments were conducted with angular velocities of
180◦ s−1 to 90◦ s−1, which resulted in isokinetic contractions
in the relevant muscle.

The surface EMG electrodes were placed on biceps brachii
of each subject in a bipolar configuration. The distance
between electrodes was set at 2 cm and all signals were
checked to ensure inter electrode impedance, which was
less than 5kΩ. The EMG measurements were recorded by
using a 16-channel wireless EMG (Noraxon) at a sampling
frequency of 1500 Hz. The EMG activity of each subject
was additionally recorded for the MVC. Simultaneously with
the EMG acquisition, 3D movements were assessed with a
camera system (Qualisys Pro Reflex capture) at a sampling
frequency of 200 Hz. A data set consisting of raw EMG
and joint angles were collected from the participants. This
data sets of the participants included elbow flexion/extension
movements of constant speed 90◦ s−1 and changing speed
(180◦ s−1 to 90◦ s−1).

B. Experimental Results

We determined the model orders na, nb, nc and input
delay nk for both identification methods and for each par-
ticipant as shown in Table I, while the polynomial order n
for the trend removal was 3.

TABLE I: ARIMAX model orders obtained for the standard
and suggested identification methodology denoted as std and
sug, respectively.

Data set na nb nc nk

std sug std sug std sug std sug

P1 3 9 4 4 3 3 5 5

P2 3 8 3 4 1 1 2 4

P3 3 9 2 8 1 1 3 1

P4 3 7 2 5 1 1 1 2

We estimated the elbow joint angles for each participant
by using the EMG measurements and the ARIMAX models
given in Table I and compared these estimations with di-
rectly measured elbow joint angles during the elbow flexion
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Fig. 6: Comparison of the measured elbow joint angles
during constant speed flexion/extension with the estimated
values based on the suggested identification methodology
and the standard approach. Simulations (a) based on data
set P1, (b) based on data set P2, (c) based on data set P3,
(d) based on data set P4.



and extension. The estimated elbow joint angles based on
integrated EMG (black), standard processed EMG (gray) and
measured angle values (red) were plotted. Figure 6 illustrated
the performance of the estimation of elbow joint angles for
the participants during constant speed contractions. In the
depicted results, it was observed that the estimated elbow
joint angles deviated from the measured values with both
of the methods. However, modelling based on the integrated
EMG reduced the deviations in the estimations.

Additionally, we evaluated the results by using Normalized
Root-Mean-Square Error (NRMSE):

NRMSE =

(
||θ − θ̂||

||θ − mean(θ)||

)
(9)

with the norm being the Euclidean one. Then we obtained
the fitness values:

fit = 1− NRMSE (10)

which have been represented in Table II for each participant
and for both estimation approaches. These results indicated
that the integrated EMG based identification methodology
has estimated the elbow joint angles, with an average ac-
curacy of 93.7%, whereas it was 72.8% for the standard
approach. The suggested approach achieved an increase in
the estimation of the elbow joint angles between 12.6%
to 41.4% for each participant. During the experiment, the
third participant reported fatigue, which has been observed
in Figure 6 c, since the estimation performance of the stan-
dard approach decreased significantly due to the changing
dynamics in the muscle. The elbow joint angles, during el-

TABLE II: Fitness value between measured and simulated
values for the constant speed contractions.

Data set Standard method Suggested method

P1 0.781 0.907

P2 0.804 0.967

P3 0.525 0.939

P4 0.802 0.938

bow flexion/extension movements, have been also estimated,
with a changing speed from 180◦ s−1 to 90◦ s−1 and these
have been compared with estimations from directly measured
elbow joint angles. Figure 7 illustrated the performance of
the estimation of elbow joint angles for the participants. The
fitness values of the estimations with the changing speed
movements were represented in Table III. In this case, it has
been observed that the estimation performance decreased for
both of the identification approaches, when compared to the
constant speed movements. However, the suggested approach
still resulted in an increase in the fitness values since the
average values were 59.7% and 82.5% for the standard and
suggested methods, respectively. The effect of fatigue on
the joint angle estimations was again higher in the standard
approach as observed from Figure 7c. Moreover Figure 7b
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Fig. 7: Comparison of the measured elbow joint angles
during changing speed flexion/extension with the estimated
values based on the suggested identification methodology
and the standard approach. Simulations (a) based on data
set P1, (b) based on data set P2, (c) based on data set P3,
(d) based on data set P4.



and Figure 7d indicated that the joint angle estimations,
with the standard approach, contained higher oscillations
especially around the maximum and minimum values.

TABLE III: Fitness value between measured and simulated
values for the changing speed contractions.

Data set Standard method Suggested method

P1 0.750 0.823

P2 0.457 0.777

P3 0.539 0.800

P4 0.644 0.850

IV. CONCLUSIONS

We proposed a methodology for estimating the dynamics
of the elbow joint angles starting from Electromyography
(EMG) measurements of biceps brachii. The novelty relies
on the consideration that the model from integrated EMG
signals to joint angles is approximately linear; this implies
that it is possible to perform classical identification steps
based on auto-regressive integrated moving average with
exogenous input (ARIMAX) models. To test the validity of
this methodology we measured surface EMG plus elbow
joint angles from a set of participants performing elbow
flexion and extensions. The experimental data enabled us
to identify muscular dynamics through ARIMAX models,
and later estimate the elbow joint angles during elbow
flexion/extension by using only the EMG measurements.

The experimental results showed that the suggested mod-
elling increased the accuracy of estimation of the elbow
joint angle during isokinetic contractions compared to the
standard approach in a simple and efficient manner. The
increase in the performance of the estimation was signif-
icantly higher (up to 41.4%) when the flexion/extension
movements consisted of different speeds. Our approach can
be further developed to be used in medical and robotic
applications where it is impractical to measure or estimate
additional physiological parameters other than surface EMGs
for examining muscular dynamics.

In our future research, EMG signals from lower leg
muscles will be acquired and used in the control of forwards-
backwards movements in a robotic leg. The system identi-
fication methodology will be based on surface EMG mea-
surements from multiple muscles, i.e., tibialis anterior and
gastrocnemius. A future objective is to articulate the robotic
leg in two degrees of freedom, in order to perform forwards-
backwards and inwards-outwards movements around the
ankle.
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