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Abstract: Heating, Ventilation and Air Conditioning (HVAC) systems play a fundamental
role in maintaining acceptable thermal comfort and air quality levels. Model Predictive Control
(MPC) techniques are known to bring significant energy savings potential. Developing effective
MPC-based control strategies for HVAC systems is nontrivial since buildings dynamics are
nonlinear and influenced by various uncertainties. This complicates the use of MPC techniques
in practice. We propose to address this issue by designing a stochastic MPC strategy that
dynamically learns the statistics of the building occupancy patterns and weather conditions.
The main advantage of this method is the absence of a-priori assumptions on the distributions
of the uncertain variables, and that it can be applied to any type of building. We investigate
the practical implementation of the proposed MPC controller on a student laboratory, showing
its effectiveness and computational tractability.
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1. INTRODUCTION

Heating, cooling and air conditioning is a necessity in
buildings (commercial, residential, and industrial), which
account for a major share of the global energy consump-
tions. Reports indicate that Heating, Ventilation and Air
Conditioning (HVAC) systems in developed countries con-
tribute for approximately one fifth of the total national
energy usages (European Commission, 2008).

It is generally accepted that buildings frequently use more
energy than expected or desired, and that often HVAC
control systems do not operate properly. In brief, current
practice shows its limits, with potential energy savings
achievable by using systematic building management be-
ing estimated from 5% to 30% of the total consump-
tions (Costa et al., 2013; Chua et al., 2013).

These figures indicate a tremendous potentials of improve-
ments. It is not surprising thus that several academic
and industrial research groups are actively working on
achieving these improvements.
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1.1 Literature Review

The current trend is to improve HVAC control systems
performance by using predictive strategies, like in Erickson
et al. (2009); Goyal et al. (2012); Gwerder and Toedtli
(2005); Salsbury et al. (2012); Hua and Karavab (2014).

This tendency is supported not only by simulations (Treado
and Chen, 2013; Wallace et al., 2012; Fadzli Haniff et al.,
2013), but also by some experimental results on real build-
ings (Sturzenegger et al., 2013; Široký et al., 2011; Parisio
et al., 2013b). Model Predictive Controls (MPCs) may
truly yield better comfort levels and energy use perfor-
mance than current practices do. Energy savings depend
on the specific building and its various factors such as
insulation, weather, building occupancy patterns, etc.

In any case, contributions of MPC schemes to energy
savings are so relevant that this technology is expected
to become a common solution for smart buildings in a few
years (Aswani et al., 2012).

In particular, successful implementations will be likely
based on stochastic MPC schemes with probabilistic con-
straints: indeed, indoor air conditions are intrinsically af-
fected by stochastic disturbances, such as unpredictable
occupancy patterns and external temperature levels. Cur-
rent standards thus explicitly accounts for the possibility
of comfort violations, stating that the probability of these
violations should do not exceed certain levels (BSI, 2008).



There is already a vast literature on stochastic MPC
schemes for HVAC control. For example, Mady et al.
(2011) considers stochastic occupancy models, while Ma
and Borrelli (2012); Ma et al. (2012a,b) propose stochastic
predictive regulators with weather and load disturbances
modeled as Gaussian processes, and nonlinear programs
for the control of indoor temperatures, which are solved
with tailored sequential Quadratic Programs (QPs). Old-
ewurtel et al. (2012) instead considers stochastic weather
predictions (but deterministic predictions of the internal
gains) and computes control actions by solving linearized
non-convex problems and disturbance feedbacks.

Noticeably, all the previously mentioned approaches re-
strict disturbances to having Gaussian distribution, as-
sumption that simplifies computations and make the
problems solvable. Instead, we proposed a scenario-based
tractable approximation of the chance constrained MPC
problem, where the scenarios are i.i.d. samples extracted
from general probability distributions, thus not restricted
to be Gaussian (Parisio et al., 2013a,b). Another scenario-
based approach has been proposed by Zhang et al. (2013).
Here authors propose an iterative bilinearization of the
building model around nominal trajectories and sample
occupancy scenarios from a set of measurement data col-
lected in eight single offices equipped with motion sensors.
The numerical simulations performed in this work suggest
that scenarios-based techniques outperform other predic-
tive methods.

We eventually mention that a promising research direction
is to deal with the problem of robustify MPC with respect
to uncertainties on the building model, due, e.g., to imper-
fect predictions of internal and external heat gains (Maa-
soumy and Sangiovanni-Vincentelli, 2012). Here authors
present a model predictive control strategy that is ro-
bust against additive uncertainty, introduced as imperfect
weather and occupancy predictions.

1.2 Statement of contributions

Implementation of prototypes of stochastic MPC HVAC
schemes in real buildings has shown to be possible. In this
study we primarily focus on investigating the technology
readiness level by adopting technological improvements
suggested by the previously gained experience. We then
describe new methodological and practical implementation
details, and report a detailed analysis of the experimental
results.

With respect to the state-of-the-art literature, we: i) pro-
pose a novel building model, which better captures the
building dynamics while maintaining linearity assump-
tions; ii) develop and implement on a real testbed (the
KTH HVAC testbed) an advanced control scheme that
continuously adapt the operation of the HVAC system to
unknown disturbances while guaranteeing occupants com-
fort and wellbeing. More precisely, the new model accounts
for minimal ventilation levels and more precise actuators
dynamics. Actuators are also now controlled with more
sophisticated and better performing control laws.

We then compare and analyze the energy usage of 3 control
schemes applied to the KTH HVAC testbed. The first
controller is the current practice in our building. The

second is a deterministic MPC disregarding information on
the uncertainties of the disturbances. The third controller
is instead our novel Scenario-based Model Predictive Con-
trol (SMPC) scheme. Results show that, as expected, the
SMPC scheme leads to a more robust and potentially
energy efficient behavior of the system.

1.3 Structure of the manuscript

Section 2 presents the novel building model and related
HVAC MPC scheme. Section 3 then describes our ex-
perimental campaign, analyzes the energy usage of the
various controllers exploited during the data collection
phase, and provides remarks on the degree of precision of
the numerical results. Section 4 ends the manuscript with
a summary of our conclusions and with indications of the
next steps.

2. SCENARIO-BASED MPC FOR HVAC SYSTEMS

In this section we first describe the model of the building
(Section (2.1)), and then we outline the general structure
of the Scenario-based Model Predictive Control (SMPC)
control scheme (Section (2.2)).

The inputs of a Model Predictive Control (MPC) scheme
for building climate control are, at every time step, i) occu-
pancy levels, ii) weather conditions, and iii) measurements
of the current state of the building. The output is instead a
heating, cooling and ventilation plan for the next N hours,
where N is the prediction horizon. Conforming with the
MPC paradigm, only the first step of this control plan
is applied to the Heating, Ventilation and Air Condition-
ing (HVAC) system. After that, the whole procedure is
repeated. This introduces feedback into the system, since
the control action is a function of the current state and
currently acting disturbances. In our case the computed
outputs are, at every time step k, i) a mass air flow rate
ṁventing(k), ii) a supply air temperature Tsa(k), and iii) a
radiators mean radiant temperature Tmr.

We notice that, since the overall building energy usage is
commonly computed as the sum the energy usages of the
single thermal zones Gwerder and Toedtli (2005), here we
focus on the control of a single thermal zone (or room).

2.1 Modeling

To improve the computational tractability of the overall
control problem, we take advantage from the independence
of the CO2 concentration dynamics from the thermal ones,
which allow us to address two separated subproblems: i)
the CO2-SMPC problem, which aims at minimizing energy
use while keeping CO2 levels in given comfort bounds;
ii) the T-SMPC problem, controlling instead the indoor
temperature.

Here we describe the two separated models for the dynam-
ics under consideration.

Model for the CO2 concentration dynamics The model
is derived from a CO2 balance equation accounting for
the fresh air from the ventilation system and the amount
of CO2 generated per occupant. The state of the model



and its output, indicated respectively with xCO2
and yCO2

,
are set to be equal to ∆CO2, the nonnegative difference
between the CO2 concentration in the room and the
inlet air CO2 concentration (the latter assumed equal to
outdoor CO2 concentration levels).

The model disturbance wCO2
(k) represents the number of

occupants, while the control input is the rate of the air
flow coming from the ventilation system, which is denoted
by ṁCO2

venting. This input allows to control the heat flow due
to the ventilation system, indicated with Qventing.

The reduction in the indoor CO2 concentration levels
induced by ṁCO2

venting is modeled with the bilinear term

ṁCO2

venting·xCO2
. Since linear problems can be solved more ef-

ficiently than nonlinear ones, we derive an equivalent linear
model of the CO2 concentration dynamics by introducing
the auxiliary input uCO2

:= ṁCO2

venting · xCO2 , which then
hides the bilinear term defined above. To meet the physical
bounds on the original control input ṁCO2

venting, uCO2
has to

satisfy

ṁmin
venting · xCO2

(k) ≤ uCO2
(k) ≤ ṁmax

venting · xCO2
(k). (1)

Then, we can then easily derive ṁCO2

venting(k) by inverting

the definition of uCO2
(k).

We assume bounds on the input uCO2(k) of the form
umin
CO2
≤ uCO2(k) ≤ umax

CO2
. These bounds can be expressed

as polytopic constraints FuCO2
(k) ≤ f . We further define

comfort constraints on the indoor CO2 concentration as
0 ≤ yCO2

(k) ≤ ymax
CO2

. Considering that xCO2
= yCO2

,
comfort constraints and constraints (1) can be written in a
compact form as mixed constraints on the input and on the
output, VyyCO2(k) + VuuCO2(k) ≤ v. We refer the reader
to Parisio et al. (2013b) for details on the construction of
the constraints matrices.

With the control input uCO2
, the CO2 concentration

dynamics can eventually be described by the discrete-time
Linear Time Invariant (LTI) system

xCO2(k + 1) = axCO2(k) + buCO2(k) + ewCO2(k)

yCO2
(k) = xCO2

(k).
(2)

Model for the thermal dynamics We consider a thermal
Resistive-Capacitive (RC) network of first-order systems,
where the nodes are the states representing the temper-
atures of the room, walls, floor and ceiling. Each state is
associated to a heat transfer differential equation.

The model disturbances represent the outdoor tempera-
ture, radiation, internal gains, heat flows due to occu-
pancy, equipments and lightings. The control inputs are
the temperature of the supplied air, Tsa, the mean radiant
temperature of the radiators, Tmr, and the air flow rate
ṁventing. (We remind that ṁventing must be at least equal

to ṁCO2

venting, the latter representing the minimum air flow

rate needed to maintain optimal CO2 levels.) The inputs
Tsa, Tmr and ṁventing allow to control two different heat
flows: i) Qventing, representing the contribute due to the
ventilation system; ii) Qheating, representing the contribute
due to the radiators.

We now aim to: i) hide the bilinear term of the indoor
thermal dynamics Qventing = ṁventingcpa

(
Tsa − Troom

)
,

ii) model the contribute due to the requirements on the
CO2 concentration levels (i.e., due to the minimal air flow

ṁCO2

venting) and the absolute value of Qventing (which is part

of the cost function to be minimized).

To achieve these aims, we model the two heat flows as

Qventing = ṁCO2

ventingcpa
(
∆Th −∆Tc

)
+ cpa

(
∆uh −∆uc

)
Qheating =Aradhrad∆Th,rad

where cpa is the specific heat of the dry air, Arad is the
emission area of the radiators, hrad is the heat transfer
coefficient of the radiators, and the nonnegative variables
∆Th, ∆Tc, ∆uh and ∆uc are s.t.

∆Th −∆Tc = Tsa − Troom
∆Th + ∆Tc =

∣∣Tsa − Troom∣∣
∆uh −∆uc = ∆ṁventing

(
Tsa − Troom

)
∆uh + ∆uc = ∆ṁventing

∣∣Tsa − Troom∣∣
with ∆ṁventing := ṁventing − ṁCO2

venting the additional air
flow rate required for guaranteeing the thermal comfort,
and Troom the indoor temperature.

We then represent physical bounds on the original control
inputs as

Tmin
sa −Troom(k)≤∆Th(k)−∆Tc(k)≤Tmax

sa −Troom(k) (3)∣∣∆uh(k)−∆uc(k)
∣∣≤∆ṁmax

venting(k)
∣∣∆Th(k)−∆Tc(k)

∣∣ (4)

where ∆ṁmax
venting(k) := ṁmax

venting − ṁ
CO2

venting(k).

With the newly introduced variables, the dynamics of the
indoor temperature can be modeled with the discrete-time
Linear Time Invariant (LTI) system

xT(k + 1) = ATxT(k) +BT(k)uT(k) + ETwT(k)

yT(k) = CTxT(k),
(5)

where the state xT(k) contains the temperatures of the
room and of the inner and outer parts of the walls,

uT(k) :=
[
∆Th(k),∆Tc(k),∆uh(k),∆uc(k),∆Th,rad(k)

]
is the input vector, and wT(k) is the vector of random
disturbances (outdoor temperature, solar radiation and
internal heat gains). The output yT(k) is the indoor
temperature at time k. We notice that the input matrix
BT(k) is time varying since it depends on ṁCO2

venting(k).

Compared to our previous contributions (Parisio et al.,
2013a,b), the building model now encompasses a more
detailed solar radiation model. Furthermore, the temper-
ature variation in adjacent rooms has been estimated by
means of a sinusoidal dependence in time, which proved
to be in sufficiently good accordance with measured data.

By following the same procedure outlined in sub-section 2.1,
we impose hard constraints on the inputs and com-
fort constraints on the indoor temperature. Hence, hard
constraints on inputs and constraints (4) can be writ-
ten in compact form as polytopic constraints on inputs,
FuT(k) ≤ f . Comfort constraints on the output and
constraints (3) can be written in a compact form as mixed



constraints on the input and on the output, VyyT(k) +
VuuT(k) ≤ v.

We eventually notice that, once ṁCO2

venting(k) and uT(k)

have been computed, the original control variables Tsa(k),
Tmr(k) and ṁventing(k) can be easily computed by simple
inversion formulas.

2.2 Scenario-based MPC

As suggested in the modeling section, we decouple the
synthesis problem in two separated parts and formulate
two problems: the CO2-SMPC problem, which considers
model (2), and the T-SMPC problem, which includes
model (5).

We also remark that, since the requirements on CO2 con-
centrations have priority over the thermal comfort ones,
the solution computed by the CO2-SMPC is considered
by the T-SMPC as a lower bound on the air flow rate.

We thus consider an MPC problem for the control of
discrete-time LTI systems of the form

x(k + 1) = Ax(k) +B(k)u(k) + Ew(k)

y(k) = Cx(k),
(6)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control
input, w(k) ∈ Rr is the stochastic disturbance and y(k) ∈
Rp is the output. Indeed (6) represents either (2) or (5),
depending on the controller under consideration (CO2-
SMPC or T-SMPC).

Consider then a prediction horizon N and define

x :=
[
x(1)T, . . . , x(N)T

]T
,

u :=
[
u(0)T, . . . , u(N − 1)T

]T
,

y :=
[
y(0)T, . . . , y(N − 1)T

]T
,

w :=
[
w(0)T, . . . , w(N − 1)T

]T
,

where x(k + 1) = Ax(k) + Bu(k) + Ew(k) denotes the
predictions of the state after k time instants into the
future. Defining the prediction dynamics matricesA,B,E
and C s.t.

x = Ax(0) +Bu+Ew

y = Cx,
(7)

with x(0) the current measured value of the state, we can
express the output as a function of the initial state x(0),
i.e., as

y = CAx(0) +CBu+CEw. (8)

The linear constraints on the inputs and outputs over the
prediction horizon can instead be generally written as

Vyy + Vuu ≤ v
Fu ≤ f ,

(9)

where F ∈ Rq×mN , f ∈ Rq, Vy ∈ Rr×pN , Vu ∈ Rr×mN

and v ∈ Rr.

By replacing (8) in (9), we can write the constraints on
the outputs as Guu+Gww ≤ g, where Gu, Gw and g are
matrices of appropriate dimensions.

MPCs can then be formulated so that it can simultane-
ously incorporate weather and occupancy forecasts and

their uncertainties by means of chance-constrained formu-
lations. It is indeed possible to assume the possibility of
violating the comfort bounds on the indoor temperature
and CO2 levels with a predefined probability, i.e., formu-
late output constraints as

P
[
Guu+Gww ≤ g

]
≥ 1− α.

with α ∈ [0, 1] being the violation probability level.
In these formulations α represents a tradeoff between
performance and constraint satisfaction.

The cost function represents the energy use over the whole
prediction horizon. Denoting by cTu∆k with c ∈ RmN

the cost vector and ∆k the sampling period, the control
problem can be formally stated as

Problem 1. (Chance Constrained MPC for HVAC Control).

min
y
cTu∆k

s.t. P
[
Guu+Gww ≤ g

]
≥ 1− α

Fu ≤ f ,
with 1 − α the desired probability level for constraint
satisfaction.

Chance constrained problems like 1 are generally in-
tractable unless the uncertainties follow specific distribu-
tions, e.g., Gaussian or log-concave. In these cases it is
possible to obtain equivalent convex (and thus compu-
tationally efficient) reformulations, as in Kall and Mayer
(2005).

However, as described later, Gaussian assumptions are
rather restrictive. To overcome this limitation but still
obtain a solvable MPC problem we propose to apply ran-
domized approaches Calafiore (2010), which do not require
the specification of particular probability distributions for
the uncertainties but only the capability of randomly ex-
tracting from them.

The approach is as follows: i) let w1, . . . ,wS be a set
of S i.i.d. disturbances samples (called scenarios), wi :=[
wT

i (0), . . . , wT
i (N − 1)

]T
, i = 1, . . . , S. Then the chance

constraints in Problem (1) can be replaced with the
deterministic constraints

Guu+Gwwi − g ≤ 0, i = 1, . . . , S.

Since most of the constraints in (10) are redundant, the
only constraint that is required to be satisfied is

Guu ≤ g − max
i=1,...,S

Gwwi

(where the max applies element-wise to Gwwi); ii) soften
the constraints in (10) by introducing the slack variables
ε(k) ∈ Rp at each time step k, and eventually approximate
Problem 1 with

Problem 2. (SMPC for HVAC Control).

min
u
cTu∆k + ρ1Tε

s.t. Guu ≤ g + ε− max
i=1,...S

Gwwi

Fu ≤ f ,
(10)

where ε is the vector containing all the slack variables, ρ
is the weight on the slack variables, and 1 is a matrix of
ones with appropriate dimensions.



We notice two important remarks:

• (how to choose the number of scenarios S) letting
d = mN be the number of decision variables, S can
be chosen based on the sufficient condition

S ≥ 2

α

(
ln

(
1

β

)
+ d

)
, (11)

that guarantees that considering constraints (10) will
lead to a feasible solution for Problem 2 with a
confidence level (1 − β) ∈ (0, 1) with β an user-
defined parameter (Calafiore, 2010; Calafiore and
Campi, 2008). Our experience nonetheless indicates
that (11) may be overly pessimistic. E.g., we ran
numerical simulations with α = 0.05 and β = 0.001
and computed the empirical probability of constraint
violation over 2400 different i.i.d. instances of the
random convex problem (2). Applying condition (11),
we set M = 3157 and empirically reported a con-
straints violations probability of 0.0044. Halving the
indication given by (11) (M = 1579) instead led to an
empirical probability of constraint violations of 0.042,
much closer to the confidence level required initially.
• (meaning of the slack variables ε(k)’s) the ε(k)’s tune

the number of possible constraint violations and guar-
antee that the problem with sampled constraints is
always feasible. If the optimal solution can be ob-
tained without violations of the softened constraints,
the slack variables will be set to zero. The designer
can thus considerably penalize constraint violations
by assigning to the weighting factor a value that is or-
ders of magnitude greater than the other coefficients
parameters.

For algorithms for the generation of the scenarios we send
back the interested reader to Parisio et al. (2013a,b).

3. EXPERIMENTAL CASE STUDY

3.1 Description of the experimental setup

We consider a laboratory of approximatively 80m2 in
the ground floor of the Q-building of the KTH Royal
Institute of Technology campus in Stockholm. The room
has a concrete heavyweight structure with limited glass
surface and one external wall, facing South-East, which
is partially shaded by a parking lot. As summarized in
Figure 1, its HVAC system is composed mainly of two
parts: the ventilation system, supplying fresh air, and a
radiator heating system.

The air in the ventilation system is pushed from a central
fan (not controllable by us) that is active only between
8:00 and 16:00 during working days. Thus no ventilation
control action can be carried when this fan is off, and as
a consequence we only report tests performed when the
central fan was running. A part from this, the ventilation
system works as follows: the balanced ventilation system
pre-conditions fresh air from outside, distributing it at
a temperature of about 20℃. Part of this generated air
flow is then conveyed directly into the room, while part
can be further cooled by a cooling coil. Summarizing,
the controllable actuators of the ventilation system are 3:
two dampers that regulate the opening of the inflow and
outflow ducts, and a valve that regulates the temperature

Fig. 1. Scheme of the HVAC system of the testbed.

of the air chilling circuit. When the central fan is on, a
minimum level of the air flow rate is guaranteed in any
case.

We remark that the ventilation / cooling system is under-
dimensioned: in case of extreme occupancy levels (e.g.,
25 people) and relatively moderately high external tem-
perature (e.g., above 0 ℃), full actuation is not sufficient
to maintain internal temperature / CO2 levels inside the
respective comfort bounds, as shown in some of the inves-
tigated experimental cases.

The heating system is instead composed by common
radiators. The flowing hot water is provided by a district
heating, that autonomously decide the temperature of the
fluid considering the external temperature conditions. The
unique actuator that can be controlled in our testbed is
thus the valve regulating the flow of the heating fluid.

Figure 2 depicts the architecture of the implemented con-
trol system: the indoor temperature and CO2 concentra-
tion are controlled through the ventilation system and ra-
diators, which are actuated using low-level PI controllers.
The set-points for the low-level controllers are computed
by our SMPC at each time instant, based on new mea-
surements and updated information about weather and
occupancy patterns.

Room

Ventilation
Unit

Radiators

Low-Level
PI

Low-Level
PI

CO2

SMPC
Temperature

SMPC

Scenarios
Generator

%venting

%cooling

%heating

Qventing

Qheating

CO2 concentrations and
temperature measurements

ṁCO2

venting

ṁventing

Tsa

Trad

Fig. 2. Architecture of the control system implemented on
the testbed.

The scenario-based controller is synthesized according to
Algorithm 1.



Algorithm 1 Control Synthesis

1: for k = 1, 2, . . . do
2: set xCO2(0) = xCO2(k) and xT(0) = xT(k)
3: compute the minimum number of scenarios for

the CO2-SMPC problem, SCO2 , and for the T-SMPC
problem, ST

4: extract SCO2 occupancy scenarios (for the CO2

control problem) and ST weather and occupancy sce-
narios (for the temperature control problem) over the
prediction horizon N

5: solve the CO2-SMPC problem and compute the

sequence
{
ṁCO2

venting(0), . . . , ṁCO2

venting(N − 1)
}

6: solve the T-SMPC problem and compute(
ṁventing(0), Tsa(0), Tmr(0)

)
7: set the setpoints of the low-level PI controllers the

values computed at the previous step, compute the
actuation commands and actuate

8: end for

3.2 Model Validation

Figures 3 and 4 reports graphical validations of the CO2

and temperature models (2) and (5) against data from
the testbed collected during July 2013. We notice that the
models accurately capture the dynamics of the systems in
consideration, and that they constitute an improvement
w.r.t. the models considered in Parisio et al. (2013b).
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Fig. 3. Validation of the thermal model using the measured
temperatures collected from the testbed.
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Fig. 4. Validation of the CO2 concentration model us-
ing the measured concentrations collected from the
testbed.

3.3 Evaluation of Experimental Results

We consider two performance indexes, i) total energy
usage, and ii) levels of violations of the comfort bounds,
respectively calculated as

Etot = cpa

N−1∑
k=0

ṁventing(k)
∣∣∣Tsa(k)− Troom(k)

∣∣∣∆k [kWh] ,

Ch =
∑

k s.t. Troom(k)>TUB

(
Troom(k)− TUB

)
∆k [℃ h] .

TUB and ∆k above are respectively the upper bound on the
internal temperature comfort level and the time between
two samples.

We compare three controllers: i) the current practice, a
simple control logic with PI control loops and switching
logic, indicated by the acronym “AHC” (from Akademiska
Hus, the company managing the building of the testbed).
ii) a Deterministic Model Predictive Control (DMPC) ne-
glecting information on the uncertainties in the forecasts,
and computing the control inputs by solving Problem (1)
with deterministic constraints obtained by replacing the
unknown disturbances with their forecasts. iii) our SMPC.

The controllers are tested between November 3 and 19
2013 for 6 hours each day, from 9:30 to 15:30. The sampling
time for the MPC-based controllers is 10 minutes, while
the predictions horizon for the weather, occupancy and
solar radiance processes is 8 hours. The comfort range of
the indoor temperature is [20, 22] ℃.

Figure 6 shows experimental results for high-occupancy
and low-occupancy cases. Despite the difference in time,
the weather conditions during the experiments are similar,
as shown in Figure 6, while the occupancy patterns varied
during the experimental period. We devise two different
occupancy profiles: high and low.

Results for high-occupancy tests (November 13 for AHC,
November 7, after 12:30, for DMPC and November 11 for
SMPC) Remarkably, for the SMPC case, the outdoor tem-
perature is lower but its effect on the controllers’ perfor-
mance is negligible since the occupancy is the dominating
disturbance.

The upper bound on the indoor temperature is violated
in all the cases due to the ventilation system being under-
dimensioned. This leads to quite similar profiles on the
indoor CO2 concentration and temperature for the three
controllers during the high occupancy hours. Notice that
the SMPC controller has to handle a higher occupancy
than the other two controllers. We further point out that,
for the AHC controller the supply air temperature exhibits
a peak at 13:00 due to the change in the occupancy
pattern, while, for the MPC-based controllers, the profile
of the supply air temperature from the ventilation system
is significantly smoother and does not increase too much.
This behavior difference is an example of the added
value of the forecasts: the AHC controller does not have
knowledge of the upcoming occupancy pattern and decides
to turn the ventilation system off at 12:30-13:00, despite
the high indoor temperature and the expected number of
people.

Results for low-occupancy tests (November 19 for AHC,
November 5 for DMPC and November 6 for SMPC)
November 19 is a zero-occupancy day and the indoor CO2



and temperature never violate the comfort ranges, so no
control action is necessary.

Considering the two MPC-based controllers’ performance
in low-occupancy days, we notice that both the distur-
bances’ and CO2 profiles are really similar, while the
control inputs are different. The supply air temperature
for DMPC increases by 1 ℃ during the time intervals
12:30-13:30 and 14:30-15:30, and the ventilation system
is turned on and off often during the morning (9:30-
12:30). The air supply temperature for the scenario-based
controller SMPC is smoother and kept lower on average.
This behavior is mainly caused by a more stressed pre-
cooling effect during the morning (the ventilation system
is always kept on from 9:30 to roughly 11:30). This leads
to an indoor temperature profile with smaller variations,
which is a more favorable behavior in terms of comfort.
Further, the indoor temperature for the SMPC controller
is kept closer to the lower bound.

The differences in the performance of the two MPC-based
controllers emphasize the added value of the incorporated
information on the disturbances affecting the system:
SMPC computes its control inputs based on a worst-case
scenario approach, which leads to a more robust behavior
against unknown disturbances.
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Fig. 5. Comparison of AHC, DMPC and SMPC controllers
in terms of total energy usage versus levels of viola-
tions of the thermal comfort bounds.

Figure 5 presents the performance indexes of the inves-
tigated controllers by plotting their energy usage versus
the violations of the thermal comfort bounds. For the
high-occupancy cases, DMPC yields to less violations, and
uses less thermal energy because of the low-occupancy
during the first 3 hours. Comparing the AHC and SMPC
controllers, instead, we notice that, despite the higher
occupancy, the number of violations are larger for the AHC
controller at a cost of a slightly higher energy use.

Looking at the low-occupancy cases, both DMPC and
SMPC result in no violations. However the SMPC has
a smaller energy use. We point out that one important
benefit of SMPC is the possibility of tuning the violation
level and then further reduce the energy use.

4. CONCLUSIONS

This paper extends the research line on Scenario-based
Model Predictive Control (SMPC) for Heating, Ventilation
and Air Conditioning (HVAC) systems started in Parisio
et al. (2013a,b) by proposing a novel scenario-based model
predictive controller for building climate control.

This control scheme uses weather and occupancy forecasts
and takes into account the uncertainty by learning the
statistics of the uncertainties on weather and occupancy
patterns. With respect to the existing literature, the paper
offers three major contributions: i) improvements in the
modeling of both the building dynamics and its actuators,
leading to a novel and more efficient optimization model
for Model Predictive Control (MPC) schemes. ii) improve-
ments in the practical implementation of the proposed
control scheme. iii) a detailed analysis on the control per-
formance in terms of energy usage vs. occupants comfort
levels on a real building, namely a testbed located in
Stockholm, Sweden. More precisely, the document com-
pares the energy usage and the comfort violations of 3
different controllers, cycled for a period of about 3 weeks:
the current practice, i.e., the controller normally used by
the building’s manager; a deterministic MPC; our SMPC.

The experimental results show that there is a promis-
ing energy savings potential for SMPC. MPC-based con-
trollers can outperform the current control practice not
only in terms of energy usage and comfort levels, but also
in terms of more favorable indoor temperature dynamics.
In particular, the SMPC leads to temperature variations
favorably smaller than the ones obtained with the other
control schemes. Also when compared to Deterministic
Model Predictive Control (DMPC), SMPC appears to
be superior, mainly due to the fact that (unlike DMPC)
SMPC is able to directly account for the uncertainty of the
weather and occupancy forecast in its control decisions. A
further benefit of our SMPC controller is the easy tun-
ability of the tradeoff between energy usage and comfort
violations with one tuning parameter describing the level
of constraint violations.

We then notice that the proposed SMPC technology is
still not completely mature and ready to be massively
deployed. Indeed, current implementations require infor-
mation on the state of the building that up to now are
collected using measurement systems usually not present
in the majority of the existing buildings (e.g., sensors mea-
suring the temperature of the walls). Thus we devise the
necessity of developing advanced estimation schemes that
provide indirectly this information. An other important
research direction is to extend the control scheme towards
networks of thermal zones: the current implementations
indeed consider each thermal zone independently and this
is inefficient from a optimization problem point of view.
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