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Abstract We consider distributed nonparametric function estimation in the framework of
Gaussian regression, i.e., with the estimand being modelled as a Gaussian random field
whose covariance (kernel) encodes expected properties like smoothness. We assume that some
agents with limited computational and communication capabilities collect M direct and noisy
measurements of the unknown map on input locations drawn from a common probability density.
Moreover we assume that their goal is to collaborate for obtaining a common and shared estimate
of the estimand. For large number of measurements M , distributedly computing the minimum
variance estimate is difficult: to do so one has first to exchange all the measurements and
the corresponding input locations, plus invert an M × M matrix. To overcome this limitation a
possibility suggested in the existing literature is to perform an opportune Karhunen-Loève (KL)
expansion of the kernel and then approximate the estimand as belonging to the space spanned by
a finite number of kernel eigenfunctions. In this paper we characterize statistically this strategy
by providing a rigorous probabilistic bound which returns crucial information on M and the
number of eigenfunctions which the network needs to exchange to obtain a certain level of
accuracy in the estimate.

Keywords: Gaussian processes, distributed estimation, reproducing kernel Hilbert spaces,
regularization, nonparametric estimation, average consensus

1. INTRODUCTION

Many modern engineering problems involve networks con-
taining a large number of agents which have to cooperate
to obtain a common goal. Examples include estimation of
the wind speed and direction field in a wind farm from
local measurements of the turbines, or the reconstruction
of the temperature field in a datacenter from local mea-
surements at each server. Even if suitable when the size of
these networks is small, centralized estimation approaches
are non-scalable, and it may be preferred to implement
distributed cooperation approaches Xu et al. (2015).

In this paper we consider the problem of distributed non-
parametric function estimation via Gaussian regression.
We model the estimand as a Gaussian random field whose
covariance (also called kernel in the machine learning liter-
ature) has to embed expected properties like smoothness.
In this framework it is typically assumed that agents
first collect M direct and noisy measurements of the
unknown map on input locations drawn from a common
(and known) probability density, then aim at obtaining a
common function estimate. Another typical assumption is
that the agents are equipped with limited computational
and data storage capabilities and can communicate only
with a restricted number of neighbors.
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Achieving the minimum variance estimate of the function
in distributed settings is complicated, since its computa-
tion requires the agents first to exchange a great amount
of information (in practice all the measurements and the
input locations where they have been collected), and then
to invert an M × M matrix (see Section 2).

To face this problem it has been proposed to use opportune
KL expansions (computed w.r.t. the probability density
governing the extraction of the input locations). A strategy
is indeed to approximate the Gaussian random field by the
E kernel eigenfunctions associated to the largest eigenval-
ues. This is the best approximation of the process before
seeing the data. A posteriori (i.e., after seeing the data)
the situation is instead more subtle. In fact, there exist
basis functions that depend on the input locations where
data are collected and approximate better the minimum
variance estimator Trecate et al. (1999).

However, the a-priori basis has still some advantages: first,
as proved in Zhu et al. (1998), the first E kernel eigenfunc-
tions describing the Gaussian field are however asymptot-
ically optimal, i.e. when the number of measurements M
grows to infinity; second, differently from the a-posteriori
basis described in Trecate et al. (1999), the a-priori basis
can be computed off-line; third, the a-priori basis leads to
estimators that are amenable to distributed computations.
All these motivations suggest the use of these KL-based
E-dimensional approximations. The so-derived estimators
can then provide an accurate approximation of the mini-



mum variance estimate by performing consensus over an
E × E matrix, with possibly E � M .

Literature review: this paper complements our previ-
ous efforts Varagnolo et al. (2010), where we identified
some sufficient conditions on M that guarantee the sta-
tistical meaningfulness of performing distributed average-
consensus based estimates, and Varagnolo et al. (2012),
and also derived other statistical error bounds connected
with the same estimator analyzed in this paper. These
bounds however apply to a different framework, since they
state how much the uncertainty in the prior information
is going to affect the estimate, while the bounds analyzed
here deal with the problem of deciding a suitable dimen-
sion E of the hypothesis space (this is further remarked in
the statement of contributions below).

Our stream of research pairs the ones of other authors,
also focusing on distributed kernel regression. An example
is Predd et al. (2009), that proposes a distributed regular-
ized kernel Least Squares (LS) regression algorithm that
exploits successive orthogonal projections, or Perez-Cruz
and Kulkarni (2010), that extends Predd et al. (2009) by
proposing some mechanisms for reducing the assumptions
on the communication burden and synchronization needs.

Estimators with reduced order model complexity are pro-
posed also in Honeine et al. (2008): here the agents
construct an estimate considering only a subset of the
representing functions that would be used to form the
optimal solution. Nonparametric schemes are applied also
in Martinez (2010), where the mobile network distributely
estimates a noisily sampled scalar random field through
opportune Nearest-Neighbors interpolation schemes. An-
other Gaussian estimation approach is considered in Xu
et al. (2013), with focus on the problem of sequentially pre-
dicting the most informative locations of future measure-
ments to minimize simultaneously the prediction error and
the uncertainty in the hyperparameters of the prior. Other
distributed regression algorithms are proposed in Cortés
(2009) which introduces introduces an algorithm used to
estimate a dynamic Gaussian random field and its gradient
(in this particular case agents estimate their own neigh-
borhood and not to the global scenario, differently from
the approach considered here). In the same framework, in
Choi et al. (2009) authors develop a distributed learning
and cooperative control algorithm where agents estimate a
static field modeled as a network of radial basis functions
whose number and centers location are known in advance
by agents.

Statement of contributions: to the best of our knowledge,
the fundamental question that has not been answered up
to now is how to choose the dimension E of the distributed
estimator, i.e. the number of basis functions necessary
to well approximate the minimum variance estimator.
Remarkably, one cannot find in the literature a bound
on the distance between the unknown function and the
E-dimensional approximation of the minimum variance
estimator as a function of the number of data points M ,
the kernel nature and the input locations statistics.

The main contribution of this paper is to provide such
missing bound, measuring the error by the L2-norm
weighted by the input locations probability density. Our
results thus provide crucial information on the prediction
capability of the distributed estimator.

The analysis reported in this paper can be also seen as
the extension to the Bayesian context of the concept of
effective dimension developed in deterministic frameworks,
e.g., in Zhang (2005). There, it has been shown that, in
the worst case, subspaces of dimension

√
M , i.e., sub-

polynomial in the data set size, capture the estimate.
Parallel to this, our bound returns information on the
Bayesian effective dimension and reveals which subspace
of the unknown function can be really influenced by the
measurements.

Structure of the manuscript Section 2 defines the Bayesian
estimation problem. Section 3 describes the KL expansion
of the Gaussian random field used to define the distributed
estimator. Section 4 presents the distributed estimator.
Section 5 characterizes it and provides the main contribu-
tion of this manuscript. Section 6 shows numerically the
accuracy of the obtained bound. Section 7 collects some
conclusions and future research directions. Proofs and a
summary of the notation (to ease the readability of the
documents) are collected in the appendix.

2. THE BAYESIAN ESTIMATION PROBLEM

2.1 The measurements model

We assume the scalar measurements model
ym = f (xm) + νm, m = 1, . . . , M (1)

with the input locations xm following the stochastic gen-
eration scheme

xm ∼ µ(X ) i.i.d., m = 1, . . . , M, (2)
with µ a non-degenerate measure (w.r.t. Lebesgue) on the
compact X . The unknown function is modeled as

f ∼ N (0, K) , (3)
i.e., f : X → R is a zero-mean Gaussian random field
with continuous covariance K : X × X → R. Finally, the
measurement noise is

νm ∼ N
(
0, σ2

ν

)
.

{νm}M
m=1, {xm}M

m=1, and f are all assumed mutually
independent.

2.2 The Bayesian estimator

The Gaussian assumptions of Section 2.1 imply that the
posterior of f given the dataset {xm, ym}M

m=1 is again
Gaussian, and that the Maximum A Posteriori (MAP) (or
minimum variance) estimator is

f̂MAP(x) = [K(x, x1) . . . K(x, xM )] HMAP

 y1
...

yM





with

HMAP :=


K(x1, x1) · · · K(x1, xM )

...
...

K(xM , x1) · · · K(xM , xM )

+ σ2
νI


−1

.

The storage and computational requirements associated to
the computation of f̂MAP(·) are thus, respectively, O

(
M2)

and O
(
M3). The communication complexity, moreover, is

either d · O (M) (with d the dimensionality of X , in case
agents share the input locations xm) or O

(
M2) (in case

agents share the covariances K(xm, xm′)).

Storage, computational and communication complexities
of the MAP estimators thus scale non favorably with the
dataset size M , and this pushes for finding approximate
estimators with more favorable scalability properties.

Our aim is thus to find approximators of f̂MAP(·) that
are both suitable for distributed implementations and have
favorable statistical properties in a sense specified in Sec-
tion 5.

3. REFORMULATING THE MEASUREMENTS
MODEL (1) THROUGH A KL EXPANSION

Our first step is to approximate the MAP estimator
f̂MAP(·) through an opportune KL expansion.

Thanks to the assumptions in Section 2.1, we expand the
kernel K in (3) in terms of that eigenfunctions of K that
are orthonormal w.r.t. the measure µ in (2). In other
words, we let these eigenfunctions be defined by

λeφe(x) =
∫

X
K(x, x′)φe(x′)dµ(x′), (4)

K(x, x′) =
+∞∑
e=1

λeφe(x)φe(x′) λ1 ≥ λ2 . . . ≥ 0, (5)

and, using δij for the Kronecker delta,∫
X

φi(x)φj(x)dµ(x) = δij . (6)

Let E be a positive integer that has been fixed a priori.
Then (5), (4) and (6) allow us to reformulate f via a KL
expansion of the form

f(x) =
E∑

e=1
aeφe(x)︸ ︷︷ ︸

=: fa(x)

+
+∞∑
e=1

beφE+e(x)︸ ︷︷ ︸
=: fb(x)

. (7)

For any a priori fixed E, the expansion coefficients are
thus divided into two sets: a finite one composed by E
random variables ae, and an infinite one composed of the
remaining variables be. The elements in these two sets are
all mutually independent, and satisfy

ae ∼ N (0, λe) , e = 1, . . . , E (8a)
be ∼ N (0, λE+e) , e = 1, 2, . . . (8b)

Importantly, for every fixed and finite E the subspace
S := span 〈φ1(·), . . . , φE(·)〉 (9)

is, thanks to the KL interpretation of K, that E-
dimensional subspace that captures the biggest part of the

statistical energy of the estimand. In other words, fa(x) is
that E-dimensional part of f(x) that captures the biggest
statistical energy of f(x), while fb(x) can be considered a
remainder.

In what follows, it is always assumed that all the kernel
eigenfunctions are contained in a ball of finite radius in
the space of continuous functions, i.e.,
Assumption 1. There exists a k < +∞ s.t.

sup
x∈X

|φe(x)| ≤
√

k < +∞ e = 1, 2, . . . . (10)

Assumption 1 is necessary for the subsequent formal
derivations. It is naturally satisfied for all the finite-
dimensional kernels and also several of the classical
infinite-dimensional ones (e.g., the splines kernels). More
in general, approximation of the KL expansion of kernels
like the Gaussian and Laplacian can be numerically ob-
tained with arbitrary accuracy, obtaining also the value of
the constant k.

4. A FINITE-DIMENSIONAL APPROXIMATION OF
THE MAP ESTIMATOR

Our next step is to search for a finite-dimensional estima-
tor of f that is suitable for distributed implementations.

Given the KL interpretation in Section 3, we force our
estimator f̂ to assume values in the finite-dimensional
subspace S defined in (9). The explanation of why f̂

is an approximation of f̂MAP, along with its statistical
characterization, is delegated to Section 5.

4.1 Rewriting model (1) in a compact form

Let
x := [x1, . . . , xM ]T

y := [y1, . . . , yM ]T ν := [ν1, . . . , νM ]T (11)
a := [a1, . . . , aE ]T b := [b1, b2, . . .]T (12)

G :=

G11 . . . G1E

...
...

GM1 . . . GME

 Z :=

 Z11 Z12 . . .
...

...
ZM1 ZM2 . . .


Gme := φe(xm), m = 1, . . . , M, e = 1, . . . , E,

Zme := φE+e(xm), m = 1, . . . , M, e = 1, 2, . . . (13)
Consider decomposition (7) and the definitions (11)-(13).
Using classical algebraic notation to handle also infinite-
dimensional objects we can then compact the measure-
ments model (1) into

y = Ga + Zb + ν. (14)
With this novel notation Ga accounts for the contribution
from fa(·) while Zb accounts for the contribution from
fb(·).

4.2 The finite-dimensional estimator f̂

Let
f̂(x) := [φ1(x) · · · φE(x)] Hy



where

H :=
(

GT G

M
+ σ2

ν

M
Λ−1

E

)−1
GT

M
(15)

and where ΛE := diag (λ1, . . . , λE).

Estimator f̂ is suitable for distributed computations in the
following sense: defining

Gm := [φ1(xm), . . . , φE(xm)]

one has
GT G

M
=

M∑
m=1

GT
mGm

M
,

GT y

M
=

M∑
m=1

GT
mym

M
. (16)

Since GT
mGm ∈ RE×E and GT

mym ∈ RE are local quan-
tities, (16) indicates that f̂ can be distributedly com-
puted through the parallelization of two average consensus
strategies: one on the GT

mGm’s and one on the GT
mym’s, for

a total of E2 +E scalars. Incidentally, we notice that aver-
age consensus can be implemented in networks with delays
and dynamically changing directed graph topologies with
failing communication links Hadjicostis and Charalambous
(2012).

5. STATISTICAL CHARACTERIZATION

As performance indexes for f̂ we consider the conditional
expectation

Err := E
[∥∥∥f − f̂

∥∥∥2
| x

]
where ‖ · ‖ is the norm induced by µ, i.e.,

‖g‖2 :=
∫

X
g2(x)dµ(x).

In our settings Err is stochastic, since it is function of the
random input locations {xm}M

m=1.

The following Theorem 2 states a lower bound on the per-
formance achievable by a generic estimator of f that comes
directly from the KL expansion introduced in Section 3.
Theorem 2. Let f̂? be any generic estimator of f that
is function of y and that takes values in any generic E-
dimensional space that has been fixed a-priori. Then

arg min
f̂?

E
[∥∥∥f − f̂?

∥∥∥2
| x

]
≥

+∞∑
e=E+1

λe. (17)

The next important result is that f̂ asymptotically reaches
the bound (17). In combination with the above theorem,
this implies that S is asymptotically the optimal range of
finite-dimensional approximations of the minimum vari-
ance estimators.
Theorem 3. Given the assumptions in Section 2.1 and
Assumption 1,

lim
M→+∞

Err =
+∞∑

e=E+1
λe in probability (18)

To obtain further insight on f̂ , we now bound its perfor-
mance index Err for any finite number of measurements
M and opportune number of eigenfunctions E. To this

aim we need to introduce some probabilistic results on the
eigenvalues of the matrix GT G

M . First of all we notice that,
as stated in (6),

E

[[
GT G

M

]
e,e′

]
=
∫

X
φe(x) φe′(x) dµ(x) = δe,e′ ,

and that, given the assumptions in Section 2.1 and As-
sumption 1,

GT G

M
= 1

M

M∑
m=1

GT
mGm

M→+∞−−−−−→ E
[

GT G

M

]
= I. (19)

(19) obviously implies

λmin

(
E
[

GT G

M

])
= λmax

(
E
[

GT G

M

])
= 1.

Moreover, since we also assume both M ≥ E and the mea-
sure µ(X ) to be non-trivial, the rank of the matrix GT G

M

will be full almost surely; thus, also, P
[
λmin

(
GT G

M

)
> 0
]

=
1. Finally,
Theorem 4. Let α ∈ (0, 1) be a desired confidence level
(e.g., 0.01 or 0.05), and ε ∈ (0, 1] represent a given
deviance index for λmin and λmax as specified in (21). If
E, M and k in (10) satisfy

1 − ε + ε log(ε) ≥ Ek

M
log
(

E

α

)
(20)

then
P
[
λmin

(
GT G

M

)
≥ ε

]
≥ 1 − α. (21)

Thanks to Theorem 4 we can claim the following:
Theorem 5. Let the assumptions in Section 2.1 and As-
sumption 1 hold, α ∈ (0, 1) be a desired confidence level
(e.g., 0.01 or 0.05), and ε ∈ (0, 1] be a given deviance
index for λmin and λmax as in (21). If moreover E, M and
k in (10) satisfy (20) then with probability at least 1 − α
it holds that

Err ≤ Bnd(E)

with

Bnd(E) := kM

1 − α

(
E∑

e=1

λ2
e

(εMλe + σ2
ν)2

)( +∞∑
e=E+1

λe

)

+ σ2
ν

1 − α

(
E∑

e=1

λe

εMλe + σ2
ν

)
+
( +∞∑

e=E+1
λe

)
.

(22)

It is worth stressing that Bnd(E) holds for any possible
stochastic machinery that generate the xm. In particular,
it depens on the input locations distribution and the
adopted kernel only through the eigenvalues λe.

The dependency of Bnd(E) on α, ε, M and k is assumed
tacit. The rationale for this notation is that, assuming
α, ε, M and k to be given, then there is an interval 1

1, . . . , Emax for which any E in this interval satisfies (20).

Given this interpretation, Figure 1 shows the dependency
of Bnd(E) on E for some fixed M , ε and α. Bound Bnd(E)
1 Implicitly we assume M sufficiently big to guarantee Emax ≥ 1.



is monotonically decreasing with E, that means that, as
for f̂ , the bigger the E the better the bound.

2 4 6 8 100
0.2
0.4
0.6
0.8

1

E

BndA(E)/
∑+∞

e=1 λe

Figure 1. Dependency of Bnd(E) (normalized by the a-
priori variance of the estimand) on E for M = 10000,
ε = 0.75, α = 0.05 and σ2

ν with a Gaussian kernel as
in (23) (implying k ≈ 5.3).

6. NUMERICAL ASSESSMENTS

As the prior K we use the Gaussian kernel over the uniform
input locations measure X = [0, 1] × [0, 1] defined by

K (x1, x2; x′
1, x′

2) = exp
(

− (x1 − x′
1)2 + (x2 − x′

2)2

0.02

)
(23)
and a measurement noise level σ2

ν = 0.05.

To describe graphically the effectiveness of our bound we
then plot in Figures 2 and 3 respectively the following
two situations: as for 2, consider M fixed and E variable,
then for every (M, E) couple perform 100 Monte-Carlo
iterations of the kind “extract f and x, then compute y, f̂
and Err”, then plot for that (M, E) the boxplot of Err and
the value of Bnd(E), so to assess how much the bound is
conservative. As for 3, perform the same kind of Monte-
Carlo simulations but keeping E fixed and M variable.

10 20 30 40 50

−4

−2

E

lo
g‖

f
−

f̂
‖2

M = 500

Figure 2. Monte-Carlo analysis of the conservativeness of
the bound Bnd(E) keeping M fixed and E variable.
Every boxplot summarizes the statistics for 100 in-
dependent realizations of Err, while the dashed black
line represents Bnd(E) for the case α = 0.05, ε = 0.75.

As one can notice, the bound is capturing the error in a
statistical sense and provides a good indication of its size.

7. CONCLUSIONS

We statistically characterized a well-known distributed
Gaussian regression algorithm that tackles estimation

500 1000 1500 2000 2500
−5

−4

−3

M

lo
g‖

f
−

f̂
‖2

E = 20

Figure 3. Monte-Carlo analysis of the conservativeness of
the bound Bnd(E) keeping E fixed and M variable.
Every boxplot summarizes the statistics for 100 in-
dependent realizations of Err, while the dashed black
line represents Bnd(E) for the case α = 0.05, ε = 0.75.

problems where agents have with limited computational,
data storage and communication capabilities, collect M
direct and noisy measurements, and aim at estimating the
underlying map from these measurements.

More precisely we provide a rigorous probabilistic a-priori
bound on the statistical performance of the estimator, and
thus find a tool that indicates how the dimension E of
the hypothesis space where the estimator lives (a hyperpa-
rameter that influences the communications needs) should
depend on the number of measurements M collected by
the agents in order to guarantee a certain statistical per-
formance.

In other words we contribute to the existing literature by
answering the fundamental question of how to choose a-
priori the hyperparameter E of the estimator based on the
expected number of samples that the agents will take so
to guarantee a certain given statistical performance index.

Finding this specific answer nonetheless does not conclude
the topic: the bound that we found relies on the crucial hy-
pothesis that the prior is correct. An important direction
is thus now to understand what changes in the structure
and the answers of the bound in case that the knowledge
of the prior is imperfect.
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APPENDIX

Remark 6. For ease of notation in this appendix we will

shorten E
[∥∥∥f − f̂?

∥∥∥2
| x

]
with E

[∥∥∥f − f̂?

∥∥∥2
]
. I.e., in all

the expectations the conditioning on the input locations
x := [x1, . . . , xM ]T is tacit.

Moreover we indicate with ?|E a generic r.v. ? that is
conditioned on a generic event E .

Appendix A. PRELIMINARY RESULT ON
CONDITIONAL EXPECTATIONS COMPUTATION

The following theorem will be used to characterize the
Mean Square Error (MSE) of the proposed estimator.

Let Ω denote a sample space, ω ∈ Ω its generic element, η
a probability measure on a suitable σ-algebra on Ω, E an
element of the σ-algebra s.t.

P [ω ∈ E ] ≥ 1 − α. (A.1)
If g (ω) is a positive random variable on Ω (i.e., s.t.
g(ω) ≥ 0 ∀ω ∈ Ω) then the expectation of g(ω) conditioned
on ω ∈ E can be bounded with a scaled version of the
unconditioned expectation of g(ω):
Theorem 7. If g(ω) is positive and (A.1) holds then

E [g(ω) | ω ∈ E ] ≤ 1
1 − α

E [g(ω)] .

Proof of Theorem 7: In general, for every E ′,

P [ω ∈ E ′ |ω ∈ E ] = P [ω ∈ E ′ ∩ E ]
P [ω ∈ E ]

≤ P [ω ∈ E ′]
P [ω ∈ E ] ≤ 1

1 − α
P [ω ∈ E ′] .

(A.2)
If ηE denotes the probability measure η conditional on E ,
thus, (A.2) implies that ηE(ω) ≤ 1

1−α η(ω). Thus

∫
E

g(ω)dηE(ω) ≤ 1
1 − α

∫
E

g(ω)dη(ω)

≤ 1
1 − α

∫
Ω

g(ω)dη(ω).

Appendix B. PROBABILISTIC BOUNDS ON THE
EIGENVALUES OF GT G

M

Proof of (21) in Theorem 4: since we satisfy the
assumptions in (Tropp, 2011, Thm. 1.1), we can thus claim
that, for every ε ∈ (0, 1],

P
[
λmin

(
GT G

M

)
≤ ε

]
≤ E

(
e−(1−ε)

εε

)M

Ek
. (B.1)

To claim (21) we then consider that: i) equivalence (20) fol-
lows from majorizing the Right Hand Side (RHS) of (B.1)
with α (i.e., letting α ≥ RHS) and then opportunely
manipulating this inequality; ii) (21) follows from (B.1)
by considering that if ? is the complementary of ? then
P [?] ≤ α ⇔ P [?] ≥ 1 − α. 2

We eventually remark that the event “λmin

(
GT G

M

)
≥ ε”

in Theorem 4 can be interpreted as particular instances of
“{xm}M

m=1 =: ω ∈ E” in (A.1) where E is an opportune
function of the threshold ε.

Appendix C. PROOF OF THEOREMS 3 AND 5

If E is an event s.t. P
[

E
]

≥ 1 − α then

P

E [∥∥∥f − f̂
∥∥∥2
]

= E
[∥∥∥f − f̂

∥∥∥2 ∣∣ E
] ≥ 1 − α.

Suppose moreover that

E
[∥∥∥f − f̂

∥∥∥2 ∣∣ E
]

≤ Bnd(E) (C.1)



with Bnd(E) defined in (22) (this will be proved from the
next paragraph). This means that if E is s.t. P

[
E
]

≥ 1−α
and if (C.1) holds then

P
[
E
[∥∥∥f − f̂

∥∥∥2
]

≤ Bnd(E)
]

≥ 1 − α. (C.2)

Since (C.2) is the claim, the previous discussion reduces
the problem to find an E and a Bnd(E) s.t. P

[
E
]

≥ 1 − α
and (C.1) hold simultaneously.

Let then E be the event

E :=
{

λmin

(
GT G

M

)
≥ ε

}
, (C.3)

and assume ε, α, M and E satisfy (20). Since in this case
we can apply Theorem 4, we are ensured that P

[
E
]

≥
1 − α. The next step is thus to verify that bound (22)
satisfies (C.1).

To this aim, recall the decomposition of the estimand as
f = fa +fb in (7), the definition of S in (9) and the design
requirement f̂ ∈ S, that imply fa, f̂ , f̂ ∈ S and fb ∈ S⊥).
By construction, then, ‖f‖2 = ‖fa‖2 + ‖fb‖2 and

E
[∥∥∥f − f̂

∥∥∥2
]

= E
[∥∥∥fa − f̂

∥∥∥2
]

+ E
[
‖fb‖2

]
. (C.4)

We thus proceed explicating the terms in the right hand
side of (C.4).

As for E
[
‖fb‖2

]
, we know from (7), (8b) and the mutual

independence of the bes that

E
[
‖fb‖2

]
=

+∞∑
e=E+1

λe. (C.5)

Thus this term is an approximation error that is influenced
only by the dimension E of our search space S.

As for E
[∥∥∥fa − f̂

∥∥∥2
]

in (C.4), we notice that
∥∥∥f̂
∥∥∥2

=

‖â‖2
2 = ‖Hy‖2

2. Since (14) implies
â = H (Ga + Zb + ν) ,

and since both a ⊥ b and ν ⊥ b, it follows that

E
[∥∥∥fa − f̂

∥∥∥2
]

= E
[
‖a − H(Ga + ν)‖2

]
+E

[
‖HZb‖2

]
so that, summarizing, Err is in general

E
[∥∥∥f − f̂

∥∥∥2
]

= E
[
‖a − H(Ga + ν)‖2

]
+E

[
‖HZb‖2

]
+E

[
‖fb‖2

]
.

(C.6)

Since fb ⊥ E , (C.6) in its turn implies

E
[∥∥∥f − f̂

∥∥∥2 ∣∣ E
]

= E
[
‖a − H(Ga + ν)‖2 ∣∣ E

]
+E

[
‖HZb‖2 ∣∣ E

]
+E

[
‖fb‖2

]
.

(C.7)

Given (C.5), what we actually need to bound is the first
two terms in the RHS of (C.7). We perform this task in
the two dedicated sections Section C.1 and Section C.2.

C.1 Bounding E
[
‖HZb‖2 ∣∣ E

]
in (C.7)

Conditioning on (C.3) it is possible to minorize H in (15),
so that

E
[
‖HZb‖2 ∣∣ E

]
≤ E

∥∥∥∥∥
(

εIE + σ2
ν

M
Λ−1

E

)−1
GT Z

M
b

∥∥∥∥∥
2 ∣∣ E

 .

(C.8)
Defining the deterministic quantities

de := εMλe + σ2
ν

Mλe
, e = 1, . . . , E, (C.9)

it follows that(
εIE + σ2

ν

M
Λ−1

E

)−1

= diag
(
d−1

1 , . . . , d−1
E

)
. (C.10)

Consider moreover that from the definition of fb in (7), of
b in (12) and of Z in (13) it follows that [Zb]m = fb (xm).
Let then

ce :=
[
GT Zb

]
e

=
M∑

m=1
φe (xm) fb (xm) e = 1, . . . , E

(C.11)
so that

bT ZT GGT Zb =
E∑

e=1
c2

e . (C.12)

Combining (C.10) and (C.12), and considering that the
de’s are deterministic, we can thus rewrite (C.8) as

E
[
‖HZb‖2 ∣∣ E

]
≤ 1

M2

E∑
e=1

E
[
c2

e

∣∣ E
]

d2
e

≤ 1
(1 − α)M2

E∑
e=1

E
[
c2

e

]
d2

e

,

(C.13)

where in the last inequality we applied Theorem 7. Consid-
ering the definition of the ce’s in (C.11) and the linearity
of E [·], then, implies

E
[
c2

e

]
=

M∑
m=1

E
[
φ2

e (xm) f2
b (xm)

]
+
∑

m 6=m′

E [φe (xm) φe (xm′) fb (xm) fb (xm′)] .

(C.14)
As for the first term in the RHS of (C.14), combining (8b)
with bound (10) we can then state that

E
[
φ2

e (xm) f2
b (xm)

]
≤ k

+∞∑
e=E+1

λe.

As for the second term in the RHS of (C.14), due to the
independence of the {xm}M

m=1 we know that
E [φe (xm) φe (xm′) fb (xm) fb (xm′)] =
E [φe (xm) fb (xm)]E [φe (xm′) fb (xm′)] .

Moreover, due to the definition of fb in (7), the fact that
be ⊥ xm, and the fact that E [be] = 0 for every e, we can
state that



E [φe (xm) fb (xm)] =
+∞∑
e′=1

E [be′ ]E [φe (xm) φE+e′ (xm)] = 0.

Combining the two results, thus, implies

E
[
c2

e

]
= kM

+∞∑
e=E+1

λe e = 1, . . . , E. (C.15)

Combining (C.9), (C.13) and (C.15) leads thus to

E
[
‖HZb‖2 ∣∣ E

]
≤

≤ kM

1 − α

(
E∑

e=1

λ2
e

(εMλe + σ2
ν)2

)( +∞∑
e=E+1

λe

)
.

C.2 Bounding E
[
‖a − H(Ga + ν)‖2 ∣∣ E

]
in (C.7)

To characterize ‖a − H(Ga + ν)‖2 we notice that, inde-
pendently of the conditioning on x or E , by construction
this term corresponds to the MSE of a classical MAP
estimator for a standard linear Gaussian model for which
the term b does not exist. Using the Woodbury matrix
identity form of the variance of the error, thus, we obtain

var (a − H(Ga + ν)) = σ2
ν

M

(
GT G

M
+ σ2

ν

M
Λ−1

E

)−1

.

Applying simultaneously Theorem 7 and the fact that,
conditioning on (C.3), it is possible to minorize H in (15)
and exploit definitions (C.9) and (C.10), it then follows
that

E
[
‖a − H(Ga + ν)‖2 ∣∣ E

]
≤ σ2

ν

1 − α

(
E∑

e=1

λe

εMλe + σ2
ν

)
.

and this concludes the proof for Theorem 5.

C.3 Proof of (18)

Given Theorem 5, we can now compute what happens to
Err when M → +∞ starting from considering bound (5).
The claim then follows directly from the fact that first and
second terms of the bound vanish for M → +∞.


