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Abstract— The aggregation and estimation of values over1

networks is fundamental for distributed applications, such as2

wireless sensor networks. Estimating the average, minimal and3

maximal values has already been extensively studied in the4

literature. In this paper, we focus on estimating the entire5

distribution of values in a network with anonymous agents.6

In particular, we compare two different estimation strategies in7

terms of their convergence speed, accuracy and communication8

cost. The first strategy is deterministic and based on the average9

consensus protocol, while the second strategy is probabilistic10

and based on the max consensus protocol. We characterize11

both strategies’ statistical performance, and present trade-offs12

and guidelines for choosing the right estimation scheme.13

Index Terms— distributed computation, consensus, data ag-14

gregation, order statistics15

I. INTRODUCTION16

The topology of networked systems, i.e., the structure of17

the local interactions among agents, has a crucial influence18

on the macroscopic properties of the whole system.19

Here we follow this stream by proposing and characteriz-20

ing a specific tool that estimates Probability Mass Functions21

(PMFs) over networks. We consider networks of collabo-22

rative anonymous agents, although anonymous, technically23

each agent is allowed to distinguish messages from its direct24

neighbors.25

A. Literature review26

The vast literature on the estimation of probability den-27

sities / mass functions over networks can be divided in the28

main classes of parametric and non-parametric approaches.29

Parametric approaches generally assume the estimand to30

have an certain structure before obtaining observations, e.g.,31

they assume the estimand to be a mixture of a certain number32

of Gaussians. Examples are the distributed implementations33

of the Expectation-Maximization (EM) algorithm [1], [2],34

[3], [4]. Nonparametric approaches instead do not fix the35

structure a priori, but rather select it from the observations.36

This class comprises the various distributed kernel density es-37

timation [5], classification [6] and clustering approaches [7].38

Additional to the parametric / non-parametric classifi-39

cation, characterizing the existing literature can also rely40

on how the information is propagated and aggregated over41
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the network. We notice strategies based on more or less 42

pre-estabilished hierarchical tree routing structures, where 43

the various nodes compute summaries of the empirical 44

distributions in their sub-trees and propagate them towards 45

the root, eventually obtaining the approximated statistics of 46

the whole network in a bottom-up fashion [8], [9], [10], 47

[11]. Other strategies can instead be based on gossip com- 48

munications, and exploit averaging techniques to explicitly 49

compute Cumulative Distribution Functions (CDFs) [12], 50

[13], [14]. Other techniques can eventually be based on 51

applying estimation methods to directly estimate of many 52

agents are in a certain specific state [15], [16]. 53

B. Statement of contributions 54

We propose a novel algorithm fostering the properties: • 55

be symmetrically distributed, i.e., without leaders / leader 56

election steps, and with agents executing the same algorithm 57

in parallel. • be privacy preserving, i.e., avoiding the possi- 58

bility of tracing or characterizing a single agent. • exploit 59

aggregation techniques, where the size of the exchanged 60

information packets is constant in time. • be fast, i.e., s.t. the 61

time for all the agents to share the same estimate is small. 62

More specifically, we propose and analyze a strategy that 63

is based on max-consensus (see Sec. III). As this takes no 64

more rounds to converge as the rounds needed to transmit 65

information between arbitrary nodes in the network, this is 66

the fastest aggregation mechanism possible over networks. 67

This emphasis on fast convergence techniques is given by 68

the consideration that time can be the crucial factor in many 69

practical situations (e.g., in vehicular networks). 70

From an algorithmic point of view our strategy departs 71

from [12], [13], [17] by substituting the average consensus 72

schemes with max-consensus ones. This apparently minor 73

modification actually makes the two estimators completely 74

different, and opens a variety of novel problems. In fact, 75

as will be clear later, while the average consensus scheme 76

requires exchanging very few scalars per communication and 77

where the agents computes the exact PMF only asymptot- 78

ically in time, the max consensus scheme converges much 79

faster than the average one, but not to the exact value. Indeed, 80

the statistical performance depend on how many scalars 81

are exchanged per communication. Here we specifically 82

characterize the temporal behavior of the performance of 83

this max-consensus strategy, stating when it is preferable to 84

the original one. 85



C. Structure of the paper1

The manuscript is organized as follows: we start with the2

formal problem definition in Sec. II, and then describe the3

two considered estimation strategies in Sec. III. Thus we4

provide the statistical characterization of the novel scheme5

in Sec. IV. We then compare the performances of the two6

schemes in Sec. V, and conclude with some remarks and7

future research directions in Sec. VI.8

II. STATEMENT OF THE ESTIMATION PROBLEM9

Consider a network G = (V, E) of V = |V| agents limited10

to the communication links E . Let Vi denote the set of11

neighbors of agent i, and V(i)
t the set of the t-steps neighbors12

of agent i. We recall that V(i)
t can be defined for t = 0 as13

V(i)
0 = {i} and, for t ≥ 1, through the recursion14

V(i)
t

.
=

⋃
(j,i)∈E

V(j)
t−1 . (1)15

Let then every agent i ∈ V belong to a given discrete state16

z(i) ∈ NB
.
= {0, . . . , B − 1} (NB being the set of plausible17

states). We are then interested in distributively estimating the18

relative frequencies of the local states z(1), . . . , z(V ), i.e., if19

nb
.
=
∣∣{i s.t. z(i) = b}

∣∣ is the number of agents in state b,20

then we are estimating the PMF21

pb
.
=
nb
V

b ∈ NB (2)22

given that the network size V is unknown while the state23

dimension B is known.24

We restrict our focus to distributed algorithms where each
agent i ∈ V has a local variable x(i)(t) that can be modified
at time t + 1 by accessing the x(j)(t)’s of the neighboring
nodes and performing the aggregation operation

x(i)(t+ 1) = f
(
x(i)(t), x(j1)(t), x(j2)(t), . . .

)
,

j1, j2, . . . ∈ Vi

that preserves the dimension of x(i)(t) (i.e., x(i)(t + 1)
and x(i)(t) have the same dimensionality). Furthermore, we
assume that at every time t each agent can compute a local
estimate of the PMF function only considering the local
variable x(i)(t), i.e., we let

p̂
(i)
b (t) = g

(
x(i)(t)

)
for an opportune g(·).25

The estimation strategy is thus defined by the initial local26

variables x(i)(0), the update function f and the estimation27

function g. To compare different estimation strategies we28

consider the Mean Squared Error (MSE) as a performance29

index J , i.e.,30

J
(
p̂1, . . . , p̂B

) .
= E

 1

V ·B
∑

b∈NB ,i∈V

(
pb − p̂(i)b

)2 (3)31

where the expectation is taken over the initial conditions.32

Remark 1 For notational simplicity we consider static net- 33

works. Nonetheless it is straightforward to handle time- 34

varying topologies by substituting the edges E with a time- 35

dependent set E(t), and the neighborhoods V(i) with the 36

time-dependent counterparts V(i)(t). 37

The problem analyzed in this manuscript is thus to propose 38

and compare different estimation schemes. 39

III. ESTIMATORS BASED ON CONSENSUS PROTOCOLS 40

We consider two particular estimators, one based on 41

average consensus strategies (see also [12], [13], [17]), and a 42

novel one based on max consensus strategies and structurally 43

similar to the size estimation techniques in [18], [19]. 44

In the following, we abstract away the message trans- 45

mission and consider a distributed system where agents 46

communicate by synchronous rounds that occur in locksteps. 47

We also consider that at each round, and in each edge, only 48

a constant size message is transmitted, and that no messages 49

are lost. The need to distinguish neighbors can be attained 50

with local IDs that do not depend on the total number of 51

agents. 52

Remark 2 For notational simplicity we consider syn- 53

chronous communications. Nonetheless this could be relaxed 54

for both estimators, since they both can be adapted to operate 55

with gossip transmissions. 56

A. Estimator based on Average consensus 57

In the average consensus protocol, the local variable is
a B-dimensional real vector x(i)(t) ∈ RB containing the
estimate of the PMF. At initialization, each node set its local
variable based only on its own state,

x
(i)
b (0) =

{
1, if z(i) = b

0, otherwise.

It is known that if at each time the local variables are 58

updated with an average consensus update like 59

x
(i)
b (t) =

∑
j∈Vi x

(j)
b (t− 1)

|Vi|
, b ∈ NB (4) 60

then, assuming perfect computations1, x(i)b (t) converges to
the average of the initial values [21]. Thus

x
(i)
b (t)

t→+∞−−−−→ 1

V

∑
j∈V

x
(i)
b (0) =

nb
V

= pb.

The PMF estimate g can thus be set as 61

p̂
(i)
b (t) = x

(i)
b (t). (5) 62

To describe the convergence properties of the algorithm, 63

recall that the average consensus algorithm can be written 64

on matrix form as 65

xb(t) = Wxb(t− 1) = W txb(0) 66

1For simplicity we do not consider quantization effects. For the effects of
quantization on the convergence properties of average consensus algorithms
see, e.g., [20].



where W is the weight matrix (for example chosen as the
so called Metropolis weights). The estimation error can then
be bounded by∣∣∣∣pb − p̂b(t)∣∣∣∣2 =

∣∣∣∣Wpb −Wp̂b(t− 1)
∣∣∣∣
2

=∣∣∣∣W tpb −W tp̂b(0)
∣∣∣∣
2
≤ ||W ||t2

∣∣∣∣pb − p̂b(0)
∣∣∣∣
2
,

i.e., the error is bounded by an exponential function∣∣∣∣pb − p̂b(t)∣∣∣∣2 ≤ ce−αt
where c and α depend on the initial condition, the network1

topology and the choice of the weights.2

We notice that we do not consider more advanced pro-3

tocols, such as accelerated average consensus, e.g., [22],4

or finite-time average consensus, e.g., [23]. The rationale5

for this choice is that we want to characterize the simplest6

averaging algorithm, with the smallest demands from both7

communication and computational points of view.8

B. Estimator based on Max consensus9

In the max consensus protocol, the local variable is a B×
M -dimensional real matrix x(i)(t) ∈ RB×M which scalar
components are initially and locally set based only on the
local state as

x
(i)
b,m(0) ∼

{
U [0, 1] , if z(i) = b

0, otherwise

where U [0, 1] is the uniform distribution between 0 and 1.10

Then at each time t, the local variables are updated with the11

max consensus update12

x
(i)
b,m(t) = max

j∈Vi
x
(j)
b,m(t− 1), b ∈ NB ,m = 1, . . . ,M. (6)13

Notice that the definition of t-steps neighborhood V(i)
t14

precisely captures which are the agents that contributed, from15

a statistical point of view, to the generation of x(i)b,m(t), i.e.,16

x
(i)
b,m(t) = max

j∈V(i)
t

{
x
(j)
b,m(0)

}
. (7)17

Let V (i)
t

.
=
∣∣∣V(i)
t

∣∣∣,18

p
(i)
b (t)

.
=

∣∣{i ∈ V(i)
t s.t. z(i) = b}

∣∣
V

(i)
t

, (8)19

and n(i)b (t)
.
= p

(i)
b (t)V

(i)
t . As shown in the following Sec. IV,20

the Maximum Likelihood (ML) estimator for n(i)b (t) given21

the x(i)b,m(t)’s is22

n̂
(i)
b =

(
1

M

M∑
m=1

−ln
(
x
(i)
b,m

))−1
. (9)23

Since

p
(i)
b (t) =

p
(i)
b (t)∑

β∈NB
p
(i)
β (t)

=
n
(i)
b (t)∑

β∈NB
n
(i)
β (t)

because of the functional invariance property of ML estima- 24

tors [24, Thm. 7.2.10, p. 320], the ML estimate of p(i)b (t) 25

given the x(i)b,m(t)’s is 26

p̂
(i)
b (t) =

n̂
(i)
b (t)∑

β∈NB
n̂
(i)
β (t)

. (10) 27

Then, since for t ≥ d (d being the network diameter) 28

n
(i)
b (t) = nb, the PMF estimated p

(i)
1 (t), . . . , p

(i)
B (t) con- 29

verges to an estimate of the global PMF p1, . . . , pB . 30

Remarkably, this estimator thus provide information not 31

delivered by the average consensus scheme. In fact it pro- 32

vides meaningful estimates of the distributions of the states 33

in every t-steps neighborhood. Considering a certain fixed 34

agent i, the set of the p(i)b (0), p
(i)
b (1), . . . correspond to local 35

views expanding up to the whole network that can be used 36

by i to rapidly infer, e.g., if close neighbors tend to have the 37

similar states. 38

We notice that estimator (10) has strong similarities 39

with the size estimators proposed, e.g., in [25], [26], [27]. 40

Nonetheless, as reported in the following section, its sta- 41

tistical properties are essentially different since each vector 42[
p̂
(i)
1 (t), . . . , p̂

(i)
B (t)

]
has correlated components. 43

We also notice that opportune termination rules can be 44

based on estimates of the diameter d of the network, again 45

obtainable exploiting max consensus approaches as in [19], 46

[28]. 47

C. Summary of the differences between the two estimators 48

The max consensus scheme 10 converges in d steps to an 49

estimate of the true PMF. Given a fixed M , thus its MSE J 50

(see (3)) will vary up to t = d and then remain constant. 51

Increasing M , the MSE curves are also expected to get 52

closer and closer to zero, due to the consistency property of 53

ML estimators. The average consensus scheme (5) is instead 54

in general converging asymptotically for t → +∞. These 55

comments are graphically represented in fig. 1. 56

d

t

J

ave. cons. estim.
max cons. estim., low M
max cons. estim., high M

Fig. 1: Graphical representation of the properties from the
estimators. By increasing M it is possible to let the max
consensus estimator 10 perform better than the average
consensus scheme (5) for t ≤ d.

The aim is then to find conditions on M and on the 57

network for which it is possible to state which algorithm 58

is preferrable for t ≤ d, i.e., when time is a concern. To 59

solve this we first need to describe the statistical properties 60

of the max consensus estimator. 61



IV. STATISTICAL CHARACTERIZATION OF THE MAX1

CONSENSUS PMF ESTIMATOR2

For notational simplicity we consider the a-consensus3

situation, where x(i)b,m(t) = xb,m
.
= maxi∈V

{
x
(i)
b,m(0)

}
.4

Consider then that the joint Probability Density
Function (PDF) p (n̂b ; n1, . . . , nB ,M) characterizes
also p

(
n̂
(i)
b (t) ; n

(i)
1 (t), . . . , n

(i)
B (t),M

)
and the moments

of n̂b and n̂
(i)
b (t). To derive the former distribution we

then consider that b 6= β implies xb,m to be statistically
independent on the the parameter nβ . Thus, from simple
order-statistics arguments [29],

p (xb,m ; n1, . . . , nB) = p (xb,m ; nb) = nb (xb,m)
nb−1

for all m (we omit the dependency on the parameter M for5

notational brevity). Since the xb,m’s are i.i.d.,6

p (xb,1, . . . xb,M ; nb) =

M∏
m=1

p (xb,m ; nb)

= nMb

M∏
m=1

(
xb,m

)nb−1
(11)7

To derive p (n̂b ; nb) we then consider that z .
= −ln ((xb,m))8

is an exponential random variable with rate nb, i.e.,9

p (z ; nb) =

{
nbe
−nbz if z ≥ 0

0 otherwise . (12)10

Considering (9), Mn̂−1b is the sum of M i.i.d. exponential
random variables with rate nb, i.e., Mn̂−1b is a Γ variate with

shape M and scale
1

nb
. Thus M−1n̂b ∼ I-Γ (M,nb), i.e.,

p (n̂b ; nb,M) = I-Γ (M,Mnb)

= Γ (M)
−1 1

n̂b

(
Mnb
n̂b

)M
exp

(
−Mnb

n̂b

)
where M is the shape and Mnb the scale. Given (10), p̂b is11

thus the ratio of correlated sums of inverse-Gamma variates,12

each with its own scale.13

Unfortunately to the best of our knowledge there exists14

no currently available literature describing the distribution15

of this kind of variates. The closest manuscripts in fact16

characterize ratios of the form x
x+y where x and y are17

independent inverse Γ variates [30]. Moreover both the18

Gamma and inverse Gamma distributions are not closed, i.e.,19

linear combinations of independent copies of these kind of20

variates have not the same original distribution up to location21

and scale parameters, see, e.g., [31]. This means that there is22

no possibility to reduce the fraction (10) to the case described23

in [30], and characterization of the statistical properties of24

p̂b must rely on Monte Carlo (MC) integration methods.25

Case NB = {0, 1} 26

In this case p̂
(i)
b (t) is a special ratio that is described 27

in [30]. Considering the results therein and p0 for simplicity, 28

pp̂0 (x ; n0, n1,M)=

(
x(1− x)

)M−1
(
n0
n1

)M
B (M,M)

(
1 +

n1 − n0
n0

x

)−2M
(13) 29

where B (·, ·) is the Beta function and x ∈ [0, 1]. Its 30

cumulative distribution is given by (17) where 31

2F1 (a, b; c;x)
.
=

+∞∑
i=0

(a)i (b)i
(c)i · i!

xi (14) 32

is the Gauss hypergeometric function and 33

(x)i
.
= x(x+ 1) · · · (x+ i− 1) (15) 34

is the so called Pochhammer symbol (with the convention 35

that (x)0 = 1). From this, it is possible to compute the 36

moments of p̂0 (and thus of p̂0 − E [p̂0]) using the relation 37

E
[
(p̂0)

k
]

=



B (M + k,M)

B (M,M)
F(k,M, n0, n1)

if n0 > n1(
n0
n1

)k
B (M + k,M)

B (M,M)
F(k,M, n1, n0)

otherwise.
(16) 38

where

F(k,M, a, b)
.
= 2F1

(
k,M ; 2M + k;

a− b
a

)
(notice that n0 and n1 appear in inverted positions in the 39

two cases in (16)). 40

It is possible to notice that when n0 = n1 then the esti- 41

mators are unbiased for every M , otherwise –as expected– 42

they are only asymptotically unbiased (for M → +∞). 43

Numerical evaluations of the dependency of the relative 44

bias and MSE of the estimators on the design parameter M 45

and on the distribution of the states are shown in figures 2 46

and 3. It can be noticed that the MSE performances follow 47

the typical O
(

1
M

)
proper of this kind of estimators. 48

As a remark, the performances indicators summarized in 49

figures 2 and 3 are valid for general p̂(i)b (t)’s when associated 50

to the relative local n(i)b (t)’s. The derivations of this section 51

thus characterize also the behavior of the estimators during 52

the transient. 53

V. COMPARISONS 54

Here we compare the performance between the average 55

consensus based estimator (5) and the max consensus based 56

estimator (10) during also their transients. Our primary goal 57

is to determine when to choose each algorithm, and how to 58

tune the parameter M for the max consensus estimator. 59

We consider four different network topologies, i.e., the line 60

topology (fig. 4a), the cyclic topology (fig. 4b), the cyclic 61



Fp̂0 (x ; n0, n1,M) =

(
1 +

n1
n0

1− x
x

)−M
MB (M,M)

· 2F1

(
M, 1−M ;M + 1;

(
1 +

n1
n0

1− x
x

)−1)
(17)

20 40 60 80 100

10−2

10−1

M

E
[ p̂ 0−

p
0

;
M

p
0

] n0 = 10, n1 = 90
n0 = 40, n1 = 60

Fig. 2: Dependency of the relative bias E
[
p̂0−p0
p0

; M
]

on M
for various values of n0 and n1. The estimators are unbiased
for every M if n0 = n1.

20 40 60 80 100

10−2

10−1

100

M

E

[ ( p̂
0
−
p
0

p
0

) 2 ;
M

]

n0 = 10, n1 = 90
n0 = 50, n1 = 50

Fig. 3: Dependency of the relative MSE E
[(

p̂0−p0
p0

)2
; M

]
on M for various values of n0 and n1.

(a) Line network

(b) Cyclic network (c) Cyclic grid
network (2× 50)

(d) Geometric
random network

Fig. 4: Network topologies, with 100 nodes.

grid topology (fig. 4c), and the geometric random topology 1

(fig. 4d), each network consisting of 100 agents. 2

We evaluate the algorithms with Monte Carlo (MC) sim- 3

ulations, using the MSE (3) as the estimation performance 4

index, where the mean is taken over all agents and all MC 5

runs. For each network the communication protocol proceeds 6

in lock-step synchronous rounds, where nodes cyclically 7

repeat the steps described in (4) and (6). We also assume 8

the states z(i) to be fixed across the single MC execution. 9

• First experiment - fig. 5: here we select a random initial 10

state for each MC run, where each agent is in state z(i) = 0 11

or z(i) = 1 with equal probability. The figure shows the 95% 12

confidence intervals for both the average consensus based 13

estimator as well as for the max consensus based estimator 14

with M = 10, M = 100 and M = 1000. 15

As expected, the average consensus based estimator con- 16

verges asymptotically to the true value. The max consensus 17

based estimator converges instead in a finite time (after d .
= 18

diameter of the graph steps) to an estimate which MSE 19

decreases with M . In this scenario (notice that the a big 20

portion of the area related to M = 100 is covered by the one 21

related to M = 1000) the choices M = 100 and M = 1000 22

yield to similar and reasonable precisions that outperform 23

the average consensus in most cases. 24

We also observe a noticeable phenomenon when M is 25

too small, e.g., M = 10. In this case in fact it might 26

happen that the MSE remarkably increases with the number 27

of communications. This is induced by the following: the 28

low M induces estimate with high statistical variance. Thus 29

it is likely that some agents will have some of their p̂(i)b (t)’s 30

noticeably overestimated. This then acts as a disturb that 31

eventually arrives, thanks to the max consensus, to the other 32

peers, that see their estimate changing considerably after 33

some time. A factor contributing to this is also the uniform 34

initial distribution of the states z(i)’s, which makes any 35

random subset of agents a good representation of the entire 36

network’s distribution, hence yielding good early estimates. 37

• Second experiment - fig. 6: we now consider a single 38

worst-case initial distribution of the states z(i), where the 39

leftmost half of the agents in fig. 4 are in state 0 and the 40

rightmost half are in state 1. Notice that this is actually not an 41

unreasonable distribution, since for estimation applications 42

in wireless sensor networks the communication topology 43

and the measured physical quantities might be spatially 44

correlated. 45

Since there is only one fixed initial state, the average 46

consensus based estimator is deterministic and unique. The 47

figure thus compares the confidence intervals of the max 48

consensus estimators (depending upon the realization of the 49

x
(i)
b,m’s) against the performance of the deterministic average 50

consensus estimate. 51
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(a) Line network (Diameter d = 99)
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(b) Cyclic network
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(c) Cyclic grid network (2× 50 nodes)
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(d) Geometric network

M = 10 M = 100 M = 1000 Average

Fig. 5: Comparison of max-consensus based estimator against the average consensus based estimator. Each network consists
of 100 nodes, and the network diameter d is marked in the figures. The shaded regions mark the 95% confidence interval
for the max-consensus estimator, while the two solid lines mark the upper and lower end of the 95% confidence interval
for the average-consensus estimator.

The outcome is then that for various networks the max1

consensus based estimator (10) can be much faster and more2

accurate than the average consensus counterpart (5), even3

for very small M ’s (even though a larger M improves the4

accuracy). The motivation is then that if the distribution of5

the states is not geographically homogeneous (assuming for6

simplicity communications links that follow Euclidean rules)7

then the max consensus is much more efficient to bring8

information of the existence of certain states to the other9

part of the network than the average.10

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS11

The two distributed estimators of PMFs over networks12

considered here, the one based on max consensus protocols13

and the one based on average consensus schemes, have14

several intrinsical differences. With the average, agents ex-15

change messages containing only 1 scalar. With the max,16

instead, they exchange messages containing M scalars (with17

M a design parameter to be chosen by the user). With18

the average, convergences is (discarding quantization issues)19

asymptotical in time. With the max, instead, convergence20

is in finite time. With the average, the final estimate is21

(discarding communications failures issues) equal to the true22

value. With the max, the final estimate has a statistical 23

precision that is direcly related to M . 24

The results shown here clearly indicate that there exists 25

no uniformly better algorithm and no uniform rule to choose 26

M : while in certain situations the average consensus strategy 27

is the most reasonable strategy, in some others it is outper- 28

formed by the max consensus one. The rationale is induced 29

by how the states of the peers are distributed across the 30

network. If these are geographically clustered, then the max 31

consensus scheme is preferrable because of its faster mixing 32

properties, i.e., the capability of bringing information about 33

the existence of other states across the network in a much 34

faster way than the average one. 35

This work opens thus a variety of research directions. 36

The first one is a more precise characterization of when the 37

strategy performs better than the average-consensus one and 38

of how to tune M , for certain fixed categories of graphs 39

and communication protocols. An other one is on how to 40

exploit the strategy to perform fast detection of changes in 41

the aggregated network state. An other important ones is to 42

associate the state with local topological properties, e.g., by 43

setting it to be equal to the number of neighbors, and build 44
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Fig. 6: Comparison of max-consensus based estimator against the average consensus based estimator for a single worst-case
initial condition. Each network consists of 100 nodes, and the initial state is determined by the agents spatial configuration.
The shaded regions mark the 95% confidence interval for the max-consensus estimator, while the solid line mark the
deterministic estimation for the average-consensus estimator.

on top of the proposed PMF estimators schemes that detect1

the most likely shape of the network.2

REFERENCES3

[1] H. Jiang and S. Jin, “Scalable and Robust Aggregation Techniques4

for Extracting Statistical Information in Sensor Networks,” in IEEE5

International Conference on Distributed Computing Systems, 2006.6

[2] R. Nowak, “Distributed EM algorithms for density estimation7

and clustering in sensor networks,” IEEE Transactions on Signal8

Processing, vol. 51, no. 8, pp. 2245–2253, Aug. 2003.9

[3] P. A. . Forero, A. Cano, and G. B. . Giannakis, “Consensus-based10

distributed expectation-maximization algorithm for density estimation11

and classification using wireless sensor networks,” in Acoustics,12

Speech and Signal Processing, Las Vegas, Nevada, 2008.13

[4] N. Vlassis, Y. Sfakianakis, and W. Kowalczyk, “Gossip-based greedy14

Gaussian mixture learning,” Advances in Informatics, vol. 3746, pp.15

349–359, 2005.16

[5] Y. Hu, J.-g. Lou, H. Chen, and J. Li, “Distributed density estimation17

using non-parametric statistics,” in Distributed Computing Systems,18

no. 49, Toronto, Canada, 2007.19

[6] M. Klusch, S. Lodi, and G. Moro, “Distributed clustering based on20

sampling local density estimates,” in International joint conference21

on Artificial intelligence, 2003.22

[7] X. Nguyen, M. Wainwright, and M. Jordan, “Nonparametric23

decentralized detection using kernel methods,” IEEE Transactions on24

Signal Processing, vol. 53, no. 11, pp. 4053–4066, Nov. 2005.25

[8] M. B. Greenwald and S. Khanna, “Power-conserving computation26

of order-statistics over sensor networks,” in ACM Symposium on27

Principles of Database Systems, no. Pods. New York, New York,28

USA: ACM Press, 2004, pp. 275–285.29

[9] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians 30

and beyond: new aggregation techniques for sensor networks,” in 31

International Conference on Embedded Networked Sensor Systems, 32

2004, pp. 239–249. 33

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a 34

Tiny AGgregation service for ad-hoc sensor networks,” ACM SIGOPS 35

Operating Systems Review, vol. 36, no. SI, p. 131, Dec. 2002. 36

[11] S. Motegi, K. Yoshihara, and H. Horiuchi, “DAG based in- 37

network aggregation for sensor network monitoring,” in International 38

Symposium on Applications and the Internet, 2006. 39

[12] M. Borges, P. Jesus, C. Baquero, and P. S. Almeida, “Spectra: 40

Robust Estimation of Distribution Functions in Networks,” Distributed 41

Applications and Interoperable Systems, vol. 7272, pp. 96 – 103, 42

2012. 43

[13] J. Sacha, J. Napper, C. Stratan, and G. Pierre, “Adam2: Reliable 44

distribution estimation in decentralised environments,” in Distributed 45

Computing Systems, Genova, Italy, 2010. 46

[14] M. Haridasan and R. V. Renesse, “Gossip-based distribution 47

estimation in peer-to-peer networks,” in International Conference on 48

Peer-to-Peer Systems, 2008. 49

[15] S. Cheng, J. Li, Q. Ren, and L. Yu, “Bernoulli Sampling Based 50

(e, d)-Approximate Aggregation in Large-Scale Sensor Networks,” in 51

IEEE INFOCOM, Mar. 2010, pp. 1–9. 52

[16] L. Massouliè, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh, 53

“Peer counting and sampling in overlay networks: random walk 54

methods,” in Proceedings of the twenty-fifth annual ACM symposium 55

on Principles of distributed computing, 2006, pp. 123–132. 56

[17] P. C. d. O. Jesus, “Robust Distributed Data Aggregation,” Ph.D. 57

Thesis, Universidade do Minho, 2011. 58

[18] D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed statistical 59

estimation of the number of nodes in Sensor Networks,” in IEEE 60



Conference on Decision and Control, Atlanta, USA, Dec. 2010, pp.1

1498–1503.2

[19] J. C. S. Cardoso, C. Baquero, and P. S. Almeida, “Probabilistic3

Estimation of Network Size and Diameter,” in Fourth Latin-American4

Symposium on Dependable Computing. João Pessoa, Brasil: IEEE,5

Sept. 2009, pp. 33–40.6

[20] R. Carli, F. Fagnani, P. Frasca, and S. Zampieri, “Gossip consensus7

algorithms via quantized communication,” Automatica, vol. 46, no.8

September, pp. 70–80, 2010.9

[21] F. Fagnani and S. Zampieri, “Randomized consensus algorithms10

over large scale networks,” IEEE Journal on Selected Areas in11

Communications, vol. 26, no. 4, pp. 634–649, May 2008.12

[22] T. Aysal, B. Oreshkin, and M. Coates, “Accelerated Distributed13

Average Consensus via Localized Node State Prediction,” IEEE14

Transactions on Signal Processing, vol. 57, no. 4, pp. 1563–1576,15

Apr. 2009.16

[23] Y. Yuan, G.-B. Stan, M. Barahona, L. Shi, and J. Goncalves,17

“Decentralised minimal-time consensus,” in IEEE Conference on18

Decision and Control and European Control Conference, Dec. 2011,19

pp. 4282–4289.20

[24] G. Casella and R. L. Berger, Statistical inference, 2nd ed. Duxbury21

Thomson Learning, 2001.22

[25] C. Baquero, P. S. S. Almeida, R. Menezes, and P. Jesus, “Extrema23

Propagation: Fast Distributed Estimation of Sums and Network24

Sizes,” IEEE Transactions on Parallel and Distributed Systems,25

vol. 23, no. 4, pp. 668 – 675, Apr. 2012.26

[26] H. Terelius, D. Varagnolo, and K. H. Johansson, “Distributed size27

estimation of dynamic anonymous networks.” in IEEE Conference on28

Decision and Control, 2012.29

[27] J. Cichon, J. Lemiesz, W. Szpankowski, and M. Zawada, “Two-Phase30

Cardinality Estimation Protocols for Sensor Networks with Provable31

Precision,” in IEEE Wireless Communications and Networking32

Conference, Paris, France, Apr. 2012.33

[28] F. Garin, D. Varagnolo, and K. H. Johansson, “Distributed estimation34

of diameter, radius and eccentricities in anonymous networks,” in 3rd35

IFAC Workshop on Distributed Estimation and Control in Networked36

Systems, 2012.37

[29] H. A. A. David and H. N. N. Nagaraja, Order Statistics. Wiley series38

in Probability and Statistics, 2003.39

[30] M. Ali, M. Pal, and J. Woo, “On the Ratio of Inverted Gamma40

Variates,” Austrian Journal of Statistics, vol. 36, no. 2, pp. 153–159,41

2007.42

[31] V. Witkovsky, “Computing the distribution of a linear combination of43

inverted gamma variables,” Kybernetika, vol. 37, no. 1, pp. 79–90,44

2001.45


