
1

Newton-Raphson Consensus
for Distributed Convex Optimization

Damiano Varagnolo, Filippo Zanella, Angelo Cenedese,
Gianluigi Pillonetto, Luca Schenato

Abstract—We address the problem of distributed unconstrained convex1

optimization under separability assumptions, i.e., the framework where2

a network of agents, each endowed with a local private multidimensional3

convex cost and subject to communication constraints, wants to collabo-4

rate to compute the minimizer of the sum of the local costs. We propose5

a design methodology that combines average consensus algorithms and6

separation of time-scales ideas. This strategy is proved, under suitable7

hypotheses, to be globally convergent to the true minimizer. Intuitively,8

the procedure lets the agents distributedly compute and sequentially9

update an approximated Newton-Raphson direction by means of suitable10

average consensus ratios. We show with numerical simulations that the11

speed of convergence of this strategy is comparable with alternative12

optimization strategies such as the Alternating Direction Method of13

Multipliers. Finally, we propose some alternative strategies which trade-14

off communication and computational requirements with convergence15

speed.16

Index Terms—Distributed optimization, unconstrained convex opti-17

mization, consensus, multi-agent systems, Newton-Raphson methods,18

smooth functions.19

I. INTRODUCTION20

Optimization is a pervasive concept underlying many aspects of21

modern life [3], [4], [5], and it also includes the management22

of distributed systems, i.e., artifacts composed by a multitude of23

interacting entities often referred to as “agents”. Examples are24

transportation systems, where the agents are both the vehicles and25

the traffic management devices (traffic lights), and smart electrical26

grids, where the agents are the energy producers-consumers and the27

power transformers-transporters.28

Here we consider the problem of distributed optimization, i.e., the29

class of algorithms suitable for networked systems and characterized30

by the absence of a centralized coordination unit [6], [7], [8].31

Distributed optimization tools have received an increasing attention32

over the last years, concurrently with the research on networked33

control systems. Motivations comprise the fact that the former34

methods let the networks self-organize and adapt to surrounding35

and changing environments, and that they are necessary to manage36

extremely complex systems in an autonomous way with only limited37

human intervention. In particular we focus on unconstrained convex38

optimization, although there is a rich literature also on distributed39

constrained optimization such as Linear Programming [9].40

Literature review41

The literature on distributed unconstrained convex optimization is42

extremely vast and a first taxonomy can be based whether the strategy43

uses or not the Lagrangian framework, see, e.g., [5, Chap. 5].44

D. Varagnolo is with the School of Electrical Engineering, KTH Royal
Institute of Technology, Osquldas väg 10, Stockholm, Sweden. Email:
damiano@kth.se. F. Zanella, A. Cenedese, G. Pillonetto and L. Schenato
are with the Department of Information Engineering, Università di Padova, Via
Gradenigo 6/a, Padova, Italy. Emails: {fzanella | angelo.cenedese
| giapi | schenato }@dei.unipd.it.

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme [FP7/2007-2013] under grant
agreement n◦257462 HYCON2 Network of excellence, from the Knuth and
Alice Wallenberg Foundation and the Swedish Research Council. This paper
is an extended and revised version of [1], [2].

Among the distributed methods exploiting Lagrangian formalism, 45

the most widely known algorithm is Alternating Direction Method of 46

Multipliers (ADMM) [10], whose roots can be traced back to [11]. 47

Its efficacy in several practical scenarios is undoubted, see, e.g., [12] 48

and references therein. A notable size of the dedicated literature 49

focuses on the analysis of its convergence performance and on the 50

tuning of its parameters for optimal convergence speed, see, e.g., 51

[13] for Least Squares (LS) estimation scenarios or [14] for linearly 52

constrained convex programs. Even if proved to be an effective 53

algorithm, ADMM suffers from requiring synchronous communica- 54

tion protocols, although some recent attempts for asynchronous and 55

distributed implementations have appeared [15], [16], [17]. 56

On the other hand, among the distributed methods not exploiting 57

Lagrangian formalisms, the most popular ones are the Distributed 58

Subgradient Methods (DSMs) [18]. Here the optimization of non- 59

smooth cost functions is performed by means of subgradient based 60

descent/ascent directions. These methods arise in both primal and 61

dual formulations, since sometimes it is better to perform dual 62

optimization. Subgradient methods have been exploited for several 63

practical purposes, e.g., to optimally allocate resources in Wireless 64

Sensor Networks (WSNs) [19], to maximize the convergence speeds 65

of gossip algorithms [20], to manage optimality criteria defined in 66

terms of ergodic limits [21]. Several works focus on the analysis 67

of the convergence properties of the DSM basic algorithm [22], 68

[23], [24] (see [25] for a unified view of many convergence results). 69

We can also find analyses for several extensions of the original 70

idea, e.g., directions that are computed combining information from 71

other agents [26], [27] and stochastic errors in the evaluation of the 72

subgradients [28]. Explicit characterizations can also show trade-offs 73

between desired accuracy and number of iterations [29]. 74

These methods have the advantage of being easily distributed, 75

to have limited computational requirements and to be inherently 76

asynchronous as shown in [30], [31], [32]. However they suffer from 77

low convergence rate since they require the update steps to decrease 78

to zero as 1/t (being t the time) therefore as a consequence the rate 79

of convergence is sub-exponential. In fact, one of the current trends 80

is to design strategies that improve the convergence rate of DSMs. 81

For example, a way is to accelerate the convergence of subgradient 82

methods by means of multi-step approaches, exploiting the history 83

of the past iterations to compute the future ones [33]. Another is to 84

use Newton-like methods, when additional smoothness assumptions 85

can be used. These techniques are based on estimating the Newton 86

direction starting from the Laplacian of the communication graph. 87

More specifically, distributed Newton techniques have been proposed 88

in dual ascent scenarios [34], [35], [36]. Since the Laplacian cannot be 89

computed exactly, the convergence rates of these schemes rely on the 90

analysis of inexact Newton methods [37]. These Newton methods are 91

shown to have super-linear convergence under specific assumptions, 92

but can be applied only to specific optimization problems such as 93

network flow problems. 94

Recently, several alternative approaches to ADMM and DSM have 95

appeared. For example, in [38], [39] the authors construct contraction 96

mappings by means of cyclic projections of the estimate of the 97

2

optimum onto the constraints. A similar idea based on contraction1

maps is used in F-Lipschitz methods [40] but it requires additional2

assumptions on the cost functions. Other methods are the control-3

based approach [41] which exploits distributed consensus, and the4

distributed randomized Kaczmarz method [42] for quadratic cost5

functions.6

Statement of contributions7

Here we propose a distributed Newton-Raphson optimization pro-8

cedure, named Newton-Raphson Consensus (NRC), for the exact9

minimization of smooth multidimensional convex separable prob-10

lems, where the global function is a sum of private local costs. With11

respect to the categorization proposed before, the strategy exploits12

neither Lagrangian formalisms nor Laplacian estimation steps. More13

specifically, it is based on average consensus techniques [43] and on14

the principle of separation of time-scales [44, Chap. 11]. The main15

idea is that agents compute and keep updated, by means of average16

consensus protocols, an approximated Newton-Raphson direction17

that is built from suitable Taylor expansions of the local costs.18

Simultaneously, agents move their local guesses towards the Newton-19

Raphson direction. It is proved that, if the rate of change of the local20

update steps is sufficiently slow to allow the consensus algorithm to21

converge, then the NRC algorithm exponentially converges to global22

minimizer.23

The proposed algorithm has several advantages w.r.t. the aforemen-24

tioned literature. The first advantage is that it is as easy to implement25

as the DSM but, if opportunely tuned, it generally shows faster con-26

vergence rates. The second is that it inherits the properties of average27

consensus algorithms, i.e., it can be asynchronous, and it can be28

adapted for the time-varying network topologies as in [45] or directed29

graphs as in [46]. Finally, we also show via numerical simulations30

based on relevant applications in machine learning and real data that31

our Newton-Raphson consensus approach can have comparable or32

better convergence rates of standard ADMM algorithms.33

Structure of the paper34

The paper is organized as follows: Section II collects the notation35

used through the whole paper. Section III formulates the problem and36

reports some preliminary results. Section IV proposes the main op-37

timization algorithm in a scalar scenario based on sensible intuitions38

and provides convergence and robustness results. Section V gener-39

alizes this algorithm to multidimensional domains and offers some40

strategies to reduce communication and computational complexity.41

Section VI compares the performance of the proposed algorithm with42

several distributed optimization strategies available in the literature43

via numerical simulations. Finally, Section VII collects some final44

observations and suggests future research directions.45

II. NOTATION46

We model the communication network as a graph G = (N , E)47

whose vertexes N := {1, 2, . . . , N} represent the agents and whose48

edges (i, j) ∈ E represent the available communication links. We49

assume that the graph is undirected and connected, and that the matrix50

P ∈ RN×N is stochastic, i.e., its elements are non-negative, it is s.t.51

P1 = 1 where 1 := [1 1 · · · 1]T ∈ RN , and it is consistent with52

the graph G, in the sense that each entry pij of P is pij > 0 only53

if (i, j) ∈ E . We recall that if P is also symmetric and includes all54

edges, i.e., pij > 0 if and only if (i, j) ∈ E , the previous assumptions55

ensure that limk→∞ P
k = 1

N
11T . Such P ’s are also often referred56

to as average consensus matrices. We will indicate with ρ(P) =57

maxi,λi 6=1 |λi(P)| the spectral radius of P , with σ(P) = 1− ρ(P)58

its spectral gap.59

We use plain italic lower case fonts to indicate scalar quantities
or functions whose range is a scalar (e.g., x, y, z), bold italic
lower case fonts to indicate vectorial quantities or functions whose
range is vectorial (e.g., x, y, z), plain italic capital letters to denote
matrices or outcomes of Kronecker products (e.g., X , Y , Z). We
use Kronecker products also to indicate component-wise consensus
steps. That is, if

Ai =

a
(i)
11 · · · a

(i)
1L

...
...

a
(i)
M1 · · · a

(i)
ML

 i = 1, . . . , N

is a generic M × L matrix associated to agent i, i = 1, . . . , N , and 60

if these agents want to distributedly compute 1
N

∑N
i=1Ai by means 61

of the communication matrix P , then to indicate the whole set of the 62

single component-wise steps 63
a
(1)
ml(k + 1)

...
a
(N)
ml (k + 1)

 = P

a
(1)
ml(k)

...
a
(N)
ml (k)

 m = 1, . . . ,M
l = 1, . . . , L

(1) 64

we use the equivalent matrix notation 65 A1(k + 1)
...

AN (k + 1)

 = (P ⊗ IM)

 A1(k)
...

AN (k)

 (2) 66

where IM is the identity in RM×M and ⊗ is the Kronecker 67

product. Notice that this notation is suited also for vectorial quan- 68

tities, i.e., it holds also if Ai ∈ RM . We also use fraction bars 69

to indicate Hadamard divisions, e.g., if a = [a1, . . . , aN]T and 70

b = [b1, . . . , bN]T then
a

b
=

[
a1
b1

. . .
aN
bN

]T
. Also, M indicates the 71

dimensionality of the domain, k a discrete time index, t a continuous 72

time index. 73

Finally, if f is a scalar function, we denote differentiation with 74

f ′ :=
df

dx
and f ′′ :=

d2f

dx2
when the domain is scalar, and with ∇ 75

operators when it is not. 76

In the Appendix, all the additional notation is collected to provide 77

a quick reference list. 78

III. PROBLEM FORMULATION AND PRELIMINARY RESULTS 79

We start dealing with the scalar case, and assume that the N agents 80

of the network are endowed with cost functions fi : R 7→ R so that 81

f : R 7→ R, f (x) :=
1

N

N∑
i=1

fi (x) (3) 82

is a well-defined global cost. We assume that the aim of the agents is 83

to cooperate and distributedly compute the minimizer of f , namely 84

x∗ := arg min
x
f (x) . (4) 85

We now enforce the following simplificative assumptions, see, 86

e.g., [27], [47], stated in general for the multidimensional case and 87

valid throughout the rest of the paper: 88

Assumption 1 (Convexity) f in (3) is of class C2, coercive, strictly
convex and with strictly positive second derivatives, i.e., f

′′
(x) :=

d2f(x)

dx2
> 0, ∀x ∈ R.

3

Assumption 1 ensures x∗ in (4) to exists and be unique. The1

positive second derivative is moreover a mild sufficient condition to2

guarantee that the minimum x∗ defined in (4) will be exponentially3

stable under the continuous Newton-Raphson dynamics described in4

the following Theorem 2. Notice that in principle just the average5

function f needs to have specific properties, and thus no conditions6

for the single fi’s are required: in fact they might even be non convex.7

The following theorem is a preliminary result on the applicability8

of Newton-Raphson (NR) optimization procedures1. It will be used9

to prove the convergence properties of the algorithms proposed10

hereafter. Moreover, along with the C2 requirements in Assumption 1,11

the theorem will allow us to apply standard singular perturbation12

analysis techniques, see, e.g., [44, Chap. 11] [50].13

Theorem 2 For every r > f(x∗), let Dr :=
{
x ∈ R

∣∣ f(x) ≤ r
}

.
Let moreover

ẋ(t) = −
f
′(
x(t)

)
f
′′(
x(t)

) =: ψ
(
x(t)−x∗

)
, x(0) ∈ Dr (5)

describe a continuous-time Newton-Raphson algorithm with f satis-
fying Assumption 1. Then x∗ is an exponentially stable equilibrium,
i.e., |x(t) − x∗| ≤ ce−γt|x(0) − x∗|, ∀ t’s and ∀x(0) ∈ Dr , for
suitable positive constants c and γ possibly depending on r.

Proof We proceed showing that f is itself a suitable Lyapunov14

function for (5). Then we exploit stability theorems offered in [44].15

We now show that f is suitable Lyapunov function for (5). Then,16

since f is coercive, convex and smooth, the set Dr is closed, convex17

and compact. Moreover x∗ ∈ Dr . Let then a1 := min
x∈Dr

f
′′
(x) and18

a2 := max
x∈Dr

f
′′
(x), whose existence is assured being Dr closed and19

compact. Moreover 0 < a1 ≤ a2, since f
′′
(x) > 0 by hypothesis.20

Consider then a generic x ∈ Dr , and the Taylor expansion of f21

around x∗ with remainder in Lagrange form, i.e.,22

f(x) = f(x∗) + f
′
(x∗)(x− x∗) +

f
′′
(x̃)

2
(x− x∗)2 (6)23

for a suitable x̃ between x and x∗ (thus x̃ ∈ Dr by convexity). Since24

f
′
(x∗) = 0, we can transform (6) into f(x)− f(x∗) =

f
′′
(x̃)

2
(x−25

x∗)2, i.e.,26

a1
2

(x− x∗)2 ≤ f(x)− f(x∗) ≤ a2
2

(x− x∗)2, ∀x ∈ Dr. (7)27

Moreover, differentiating (6) we obtain f
′
(x) = f

′
(x∗)+f

′′
(x̃)(x−28

x∗), which implies29

a1 |x− x∗| ≤
∣∣∣f ′(x)

∣∣∣ ≤ a2 |x− x∗| , ∀x ∈ Dr. (8)30

Consider then system (5). Exploiting (8) it follows that, ∀x(t) ∈31

Dr − {x∗},32

ḟ
(
x(t)

)
= f

′(
x(t)

)
ẋ(t) = −

(
f
′(
x(t)

))2
f
′′(
x(t)

) ≤ −a
2
1

a2

(
x(t)−x∗

)2
< 0.

(9)33

Consider then Theorem 4.10 in [44, p. 154]. Here (7) corresponds34

to (4.25), (9) corresponds to (4.26), and all the other hypotheses are35

satisfied. Thus f is a valid Lyapunov function and x∗ is exponentially36

stable for all x(0) ∈ Dr .37

1Other asymptotic properties of continuous time NR methods can be found,
e.g., in [48], [49].

We notice that Theorem 2 states that x∗ is practically globally
stable. Thus one can start from any point and have an exponential
convergence, although a convergence rate that is uniform for all initial
conditions might not exist. Nonetheless we can notice that, locally
and around the optimum, the rate of convergence of the Newton-
Raphson dynamics is γ = 1 independently of the convex function f .
In fact, if we linearize ψ around 0 (i.e., the dynamics of (5) around
x∗) we obtain

ψ(x) = ψ(0) + ψ′(0)x+ o(x)

= − f
′
(x∗)

f
′′
(x∗)

− f
′′
(x∗)f

′′
(x∗)− f ′(x∗)f ′′′(x∗)(
f
′′
(x∗)

)2 x+ o(x)

= −x+ o(x)

since f
′
(x∗) = 0 and f

′′
(x∗) 6= 0. 38

IV. NEWTON-RAPHSON CONSENSUS – THE SCALAR CASE 39

For a better understanding of the algorithm we are going to 40

propose, we add some additional assumptions and we later generalize 41

these ideas into the general framework. 42

We start analyzing the following simplified scenario: the local costs 43

are quadratic and scalar, i.e., fi(x) = 1
2
ai(x− bi)2, with ai > 0 and 44

x ∈ R. It is known that, in this case, x∗ = arg min
x∈R

f(x) can be 45

computed using two average consensus algorithms in parallel, see, 46

e.g., [51], [52]. In fact 47

x∗ =

N∑
i=1

aibi

N∑
i=1

ai

=

1

N

N∑
i=1

aibi

1

N

N∑
i=1

ai

, (10) 48

i.e., x∗ corresponds to the ratio of two arithmetic means. Thus, under 49

quadratic costs assumptions, if each agent defines the local variables 50

yi(0) := aibi and zi(0) := ai and updates them cycling the steps 51

x(k + 1) =
y(k)

z(k)
y(k + 1) = Py(k)
z(k + 1) = Pz(k) ,

(11) 52

it follows that, given the fact that P is an average consensus matrix, 53

limk→∞ x(k) = x∗1. Since xi(k) = yi(k)/zi(k) → x∗ for all 54

i’s, the xi(k)’s computed through (11) can be thought as the local 55

estimates at time k of the global minimizer x∗. 56

We can now generalize (11) to the case where the local cost
functions fi are not quadratic. Consider then the definitions

gi(x) := f ′′i (x)x− f ′i(x), hi(x) := f ′′i (x),

and observe that, for all x, in the quadratic case it holds that aibi = 57

f ′′i (x)x − f ′i(x) =: gi(x) and that ai = f ′′i (x) =: hi(x). As a 58

consequence, we could let each agent choose an xi(0) for all i, then 59

set yi(0) = f ′′i
(
xi(0)

)
xi(0) − f ′i

(
xi(0)

)
and zi(0) = f ′′i

(
xi(0)

)
, 60

apply (11) up to convergence and thus compute 61

x̂∗ =

1

N

N∑
i=1

(
f ′′i
(
xi(0)

)
xi(0)− f ′i

(
xi(0)

))
1

N

N∑
i=1

f ′′i
(
xi(0)

) =

1

N

N∑
i=1

gi
(
xi(0)

)
1

N

N∑
i=1

hi
(
xi(0)

) .
(12) 62

Because of the intuitions given before, we expect x̂∗ to be a
sensible estimation for the true minimizer x∗. However, x̂∗ depends
on the initial conditions xi(0) and, in general, if the fi’s are not

4

quadratic then x̂∗ 6= x∗. Therefore, (11) cannot be applied directly.
Nonetheless we notice that if all the xi(0)’s are equal, i.e., xi(0) = x,
∀i, then

x̂∗ = x− f
′
(x)

f
′′
(x)

which is a standard NR update step. Thus, if all the agents agree1

on the xi(0)’s and the consensus step (11) is given enough time2

to converge, then x̂∗ provides the right descent direction. If instead3

the agents do not agree on the xi(0)’s, then x̂∗ provides just an4

approximation of the right descent direction.5

To design the main algorithm we then observe the following:6

• (11) shall be modified so that it computes meaningful7

Newton directions even if the xi(k)’s change over time.8

Since time-varying xi(k)’s imply time-varying gi
(
xi(k)

)
’s and9

hi
(
xi(k)

)
’s, the yi(k)’s and zi(k)’s must track the changing10

averages
1

N

N∑
i=1

gi
(
xi(k)

)
and

1

N

N∑
i=1

hi
(
xi(k)

)
;11

• the computation of the averages of the various gi
(
xi(k)

)
’s and12

hi
(
xi(k)

)
’s must have a convergence rate that is sufficiently13

faster than the rate of change of the different xi(k)’s.14

These ideas are captured in the following Algorithm 1, where the15

vectorial notation also for the functions g
(
x(k)

)
and h

(
x(k)

)
is16

introduced.17

Algorithm 1 Newton-Raphson Consensus (NRC) – scalar case
(storage allocation and constraints on the parameters)

1: x(k), y(k), z(k) ∈ RN for all k. ε ∈ (0, 1)
(initialization)

2: x(0) = 0. y(0) = g
(
x(−1)

)
= 0. z(0) = h

(
x(−1)

)
= 1

(main algorithm)
3: for k = 1, 2, . . . do
4: x(k) = (1− ε)x(k − 1) + ε

y(k − 1)

z(k − 1)

5: y(k) = P
(
y(k − 1) + g

(
x(k − 1)

)
− g
(
x(k − 2)

))
6: z(k) = P

(
z(k − 1) + h

(
x(k − 1)

)
− h

(
x(k − 2)

))
7: end for

The following remarks highlight the peculiar structure of Algo-18

rithm 1:19

• line 4 substitutes the local guess update step xi(k) = yi(k −20

1)/zi(k − 1) in (11) with a low-pass filter dominated by the21

parameter ε. This is necessary because the consensus process22

on yi’s and zi’s must be faster than the tendency of xi(k)’s23

to spread apart while the various yi’s and zi’s are not close.24

If this spreading mechanism is not dominated by the consensus25

on the yi’s and zi’s, the algorithm could eventually diverge. In26

other words, line 4 softens possible too aggressive updates of27

the local estimates. It is also similar to what is usually done in28

NR approaches where only a small step is taken towards the29

newly estimated global minimum;30

• the initialization in line 2 is critical for convergence to the global31

minimizer. However robustness analysis on possible numerical32

errors in the initial conditions or quantization noise is discussed33

below;34

• in lines 5-6 the various agents modify their local yi and zi35

(and thus take into account the effects induced by changing36

xi(k)’s) before performing the consensus steps on the yi’s and37

zi’s. Basically, lines 5-6 perform a joint high-pass filter w.r.t.38

time and a tracking of the changing averages
1

N

N∑
i=1

gi(xi) and39

1

N

N∑
i=1

hi(xi); 40

• if ε = 1 and the functions fi are quadratic, then Algorithm 1 41

reduces to the system (11). 42

Before providing a formal proof of the convergence properties of 43

Algorithm 1 we give some intuitions on its behavior. The dynamics 44

of Algorithm 1 can be written in state space as follows: 45

v(k) = g
(
x(k − 1)

)
w(k) = h

(
x(k − 1)

)
y(k) = P

[
y(k − 1) + g

(
x(k − 1)

)
− v(k − 1)

]
z(k) = P

[
z(k − 1) + h

(
x(k − 1)

)
−w(k − 1)

]
x(k) = (1− ε)x(k − 1) + ε

y(k − 1)

z(k − 1)
,

(13) 46

which can be interpreted as the forward-Euler discrete-time version 47

of continuous-time system 48

εv̇(t) = −v(t) + g
(
x(t)

)
εẇ(t) = −w(t) + h

(
x(t)

)
εẏ(t) = −Ky(t) + (I −K)

[
g
(
x(t)

)
− v(t)

]
εż(t) = −Kz(t) + (I −K)

[
h
(
x(t)

)
−w(t)

]
ẋ(t) = −x(t) +

y(t)

z(t)

(14) 49

where ε is the discretization time interval and K := I − P . As a 50

consequence, for sufficiently small ε the dynamic behavior of (13) is 51

approximated by the one of (14), i.e., x(εk) ≈ x(k), where, with a 52

little abuse of notation, we used the same symbols for the continuous 53

and discrete time variables. 54

It is now possible to recognize the existence of a two-time scales 55

dynamical system regulated by the parameter ε. Therefore, we can 56

split the dynamics in the two time scales and study them separately 57

for sufficiently small ε. 58

As for the fast dynamics, by construction K is positive semidefinite 59

with kernel spanned by 1 and with eigenvalues 0 = λ1 < Re [λ2] ≤ 60

· · · ≤ Re [λN] < 2. I.e., the first four equations of system (14) imply 61

that y(t) ≈
(

1

N
1
Tg
(
x(t)

))
1 and z(t) ≈

(
1

N
1
Th
(
x(t)

))
1. 62

If these equations are inserted into the slow dynamics, i.e., into 63

the last equation of system (14), then it follows that x(t) ≈ x(t)1, 64

where x(t) is a scalar quantity that approximately evolves following 65

the continuous-time Newton-Raphson update 66

ẋ(t) = −
f
′(
x(t)

)
f
′′(
x(t)

) . (15) 67

Summarizing, for sufficiently small values of ε Algorithm 1 can 68

be described by (14), it is s.t. xi(k) ≈ x(εk) for all i’s, and thus by 69

Theorem 2 it converges to the global optimum x∗. 70

We now move from intuitions to a formal proof of convergence. 71

We start by considering the robustness of the algorithm in terms of 72

possible different initial conditions x(0). 73

Theorem 3 Consider Algorithm 1 with arbitrary initial conditions
x(0) and let Assumption 1 hold true. For every open ball Bx

∗
r :=

{x | ‖x− x∗1‖ < r } there exist two positive constants εr , cr
such that if ε < εr , then there exists γε > 0 such that, for all
x(0) ∈ Bx

∗
r , ‖x(k)− x∗1‖ ≤ cre−γεk ‖x(0)− x∗1‖ for all k.

Proof Since assumptions for Theorem 2 in [53] are satisfied, we are 74

ensured that if ε is sufficiently small then the discretized system (13) 75

inherits the same stability properties of (14). Therefore we focus on 76

5

proving that Theorem 3 holds true considering system (14) rather1

than Algorithm 1.2

The proof is based on characterizing system (14) through classical3

multi-time-scales approaches for standard singular perturbation model4

analysis [50], [44, Chap. 11]. It is divided in the following steps: a)5

perform some suitable changes of variables, b) analyze the boundary6

layer system (fast dynamics), c) analyze the reduced system (slow7

dynamics).8

In the following we will use the additional notation

Π‖ :=
11T

N
Π⊥ := I − 11T

N
x :=

1

N

N∑
i=1

xi

x‖ := Π‖x = x1 x⊥ := Π⊥x.

Moreover, to ease the proof of the following Theorem 4 we initially9

consider the more general case where g
(
x(−1)

)
, h
(
x(−1)

)
, y(0),10

z(0) are generic elements in RN . To this aim we use the additional11

notation12

α :=
1

N
1
T (y(0)− v(0)

)
β :=

1

N
1
T (z(0)−w(0)

)
. (16)13

a) changes of variables (to show that the boundary layer system
has a single isolated root): let d(t) := y(t) − v(t), so that ẏ(t) =
ḋ(t) + v̇(t). This implies

ε
(
ḋ(t) + v̇(t)

)
= −K

[
d(t) + v(t)

]
+ (I −K)

[
g
(
x(t)

)
− v(t)

]
and thus, since εv̇(t) = −v(t) + g

(
x(t)

)
,14

εḋ(t) = −K
[
d(t) + g

(
x(t)

)]
. (17)15

We now decompose d(t) into d(t) = d‖ + d⊥, d‖ := Π‖d, d⊥ :=
Π⊥d, i.e., into “mean component plus deviations from mean”. Since
Π‖K = 0 and Π⊥K = KΠ⊥ = K, then (17) can be decomposed
as εḋ‖(t) = 0 (18)

εḋ⊥(t) = −K
[
d⊥(t) + g

(
x(t)

)]
(19)

with (18) implying d‖(t) = d‖(0) = Π‖
(
y(0) − v(0)

)
= α1, α16

defined in (16).17

The same derivations can be applied to the variables b(t) := z(t)−18

w(t), z and w, so that system (14) becomes19

εv̇(t) = −v(t) + g (x(t))
εẇ(t) = −w(t) + h (x(t))

εḋ⊥(t) = −K
[
d⊥(t) + g (x(t))

]
εḃ⊥(t) = −K

[
b⊥(t) + h (x(t))

]
ẋ(t) = −x(t) +

d⊥(t) + α1+ v(t)

b⊥(t) + β1+w(t)

(20)20

Notice that the values for α and β reflect the numerical values of the21

initial conditions of the variables v, w, y, z.22

b) analysis of the boundary layer system: in this case x(t) is23

considered to be constant in time, so that g
(
x(t)

)
= g (x) and24

h
(
x(t)

)
= h (x). To analyze the stability properties of system25

εv̇(t) = −v(t) + g (x)
εẇ(t) = −w(t) + h (x)

εḋ⊥(t) = −K
[
d⊥(t) + g (x)

]
εḃ⊥(t) = −K

[
b⊥(t) + h (x)

] (21)26

we start by applying the changes of variables

ṽ(t) := v(t)− g (x) d̃⊥(t) := d⊥(t) + Π⊥g (x)

w̃(t) := w(t)− h (x) b̃⊥(t) := b⊥(t) + Π⊥h (x)

induced by the isolated root of (21), and the change of timescales 27

τ := t
ε
⇒ dτ

dt
= 1

ε
, induced by the low-pass filtering parameter ε. 28

We thus obtain the equivalent boundary layer system 29
˙̃v(τ) = −ṽ(τ)
˙̃w(τ) = −w̃(τ)

˙̃
d⊥(τ) = −Kd̃⊥(τ)
˙̃
b⊥(τ) = −Kb̃⊥(τ)

(22) 30

where the stability properties are equivalent to the ones of (21). 31

We now show that (22) is exponentially stable. This is clear for
the dynamics of the first two equations, while for the last two we
claim that V (ζ) = 1

2
‖ζ‖2 is a valid Lyapunov function for both d̃⊥

and b̃⊥. For, consider that

V̇ (d̃⊥) = −(d̃⊥)TKd̃⊥ ≤ −λ2‖d̃⊥‖2 ≤ −λ2V (d̃⊥),

where λ2 > 0 is the smallest non-zero eigenvalue of the matrix K 32

(d̃⊥ by construction lives in ker (K)⊥; similar reasonings hold for 33

b̃⊥). 34

Applying this result back to (21), we are ensured that (21) is 35

globally exponentially stable with equilibrium given by 36

lim
t→∞

v(t)
w(t)

d⊥(t)

b⊥(t)

 =

g (x)
h (x)

−Π⊥g (x)

−Π⊥h (x)

 (23) 37

for every initial condition and x. 38

c) analysis of the reduced system: substituting (23) into the last
equation of system (20) we obtain the reduced system

ẋ(t) = −x(t) +
α1−Π⊥g

(
x(t)

)
+ g
(
x(t)

)
β1−Π⊥h

(
x(t)

)
+ h

(
x(t)

) .

Let now g
(
x(k)

)
:=

1

N

N∑
i=1

gi
(
xi(k)

)
, h

(
x(k)

)
:=

1

N

N∑
i=1

hi
(
xi(k)

)
, so that we can exploit the equivalence

−Π⊥g
(
x(t)

)
+ g
(
x(t)

)
= Π‖g

(
x(t)

)
= g
(
x(t)

)
1

in the numerator and a similar equivalence for h
(
x(t)

)
in the 39

denominator. We can thus rewrite the reduced system as 40

ẋ(t) = −x(t) +
α+ g

(
x(t)

)
β + h

(
x(t)

) 1 . (24) 41

This eventually implies that (24) can then be rewritten as 42

ẋ(t) = Ψ
(
x(t), α, β

)
(25) 43

where Ψ is a smooth function of its arguments. 44

To address the stability of (25) we then decompose its dynamics 45

along the projections given by Π⊥ and Π‖, obtaining the continuous 46

time non-linear cascade system 47
ẋ‖(t) = −x‖(t) +

g
(
x‖(t) + x⊥(t)

)
+ α

h
(
x‖(t) + x⊥(t)

)
+ β

1

ẋ⊥(t) = −x⊥(t)

(26) 48

where x⊥(t) is independent on x‖(t) and exponentially decaying to 49

zero. 50

We now notice that, by construction, x‖(t) = x(t)1, i.e., x‖(t) 51

is a vector with identical entries. Therefore the dynamic behavior of 52

6

the first equation in (26) is summarized by1

ẋ(t) = −x(t) +
g
(
x‖(t) + x⊥(t)

)
+ α

h
(
x‖(t) + x⊥(t)

)
+ β

. (27)2

By Theorem 1 in [54]2, proof of exponential stability of sys-3

tem (26) can be reduced to proof of exponential stability of sys-4

tem (27) with x⊥(t) = 0, so that our case reduces to analyze5

ẋ(t) = −x(t) +
g
(
x(t)

)
+ α

h
(
x(t)

)
+ β

= ψ
(
x(t), α, β

)
. (28)6

We now consider the case α = β = 0, which is guaranteed by7

the initialization of line 2 in Algorithm 1. Given α = β = 0 and8

considering the definitions of g(x) and h(x), (28) reduces to the9

continuous-time Newton-Raphson method10

ẋ(t) = −
f
′(
x(t)

)
f
′′(
x(t)

) (29)11

that, due to Theorem 2, exponentially converges to x∗. Moreover,12

given α = β = 0, the strict positivity of h(·) and the properness13

of g(·), the trajectories of system (27) are all bounded. Thus the14

hypotheses of Theorem 1 in [54] are all satisfied and we can claim15

that (27) exponentially converges to x∗1.16

It is immediate now to check that the hypotheses of Theorem 11.417

in [44, p. 456] are satisfied, and this guarantees our claims.18

Theorem 3 holds only for the specific initial conditions given19

in line 2 of Algorithm 1. Although these initial conditions can be20

arbitrarily designed, nonetheless it is important to evaluate the ro-21

bustness of the algorithm with respect to them, since small numerical22

errors and quantization noise might lead to some perturbations. The23

following theorem shows that non-null but sufficiently small initial24

conditions on the variables v(0), w(0), y(0), z(0) let the solution of25

the algorithm exponentially converge to a neighborhood of the true26

optimum:27

Theorem 4 Consider Algorithm 1 with arbitrary initial conditions,
x(0) v(0), w(0), y(0), z(0). Let Assumption 1 hold true and

α :=
1

N
1
T (y(0) − v(0)

)
, β :=

1

N
1
T (z(0) − w(0)

)
. Then

there exist two positive constants α, β ∈ R+ and a scalar smooth
function ξ(α, β) with ξ(0, 0) = x∗ s.t. if |α| < α and |β| < β
then Theorem 3 holds true with x∗ substituted with ξ(α, β).

Proof The proof follows exactly as in Theorem 3 up to equa-28

tion (28), where ψ is a smooth function of its arguments and29

ẋ(t) = ψ
(
x(t), 0, 0

)
globally and exponentially converges to x∗.30

Given our smoothness assumptions, since ψ(x∗, 0, 0) = 0 we can31

apply the Implicit Function Theorem and be ensured that there must32

exist, in a neighborhood of α = β = 0, a smooth function ξ(α, β)33

such that ξ(0, 0) = x∗ and ψ
(
ξ(α, β), α, β

)
= 0, i.e., ξ(α, β) returns34

the equilibria of system (28) for sufficiently small values of α, β.35

Then, by performing the change of variables χ = x − ξ(α, β) and36

following the same derivations to prove the stability of slowly varying37

systems in [44, Section 9.6], it readily follows that the equilibrium38

points ξ(α, β) are exponentially stable in a neighborhood of α =39

β = 0.40

The previous theorem shows that the initialization of the variables41

v(0),w(0),y(0),z(0) is critical to the convergence of the correct42

2Formally, Theorem 1 in [54] considers just simple stability. Nonetheless it
is immediate to check that its proof is s.t. if the subsystems are exponentially
stable then the overall system is again exponentially stable.

minimum, but it also assures that sufficiently small errors will have 43

no dramatic effects such as instability. Numerical simulations in 44

fact suggest that the algorithm is robust w.r.t. numerical errors and 45

quantization noise. 46

Before turning to the multidimensional scenario, we notice that 47

Theorem 3 guarantees the existence of a critical value εr but does 48

not provide indications on its value. This is a known issue in 49

all the systems dealing with separation of time scales. A standard 50

rule of thumb is then to let the rate of convergence of the fast 51

dynamics be sufficiently faster than the one of the slow dynamics, 52

typically 2-10 times faster. In our algorithm the fast dynamics inherits 53

the rate of convergence of the consensus matrix P , given by its 54

spectral gap σ(P), i.e., its spectral radius ρ(P) = 1 − σ(P). 55

The rate of convergence of the slow dynamics is instead governed 56

by (15), which is nonlinear and therefore possibly depending on the 57

initial conditions. However, close the equilibrium point the dynamic 58

behavior is approximately given by ẋ(t) ≈ −
(
x(t) − x∗

)
, thus, 59

since xi(k) ≈ x(εk), then the convergence rate of the algorithm 60

approximately given by 1− ε. 61

Thus we aim to let 1− ρ(P)� 1− (1− ε), which provides the 62

rule of thumb 63

ε� σ(P) . (30) 64

which is suitable for generic cost functions. We then notice that, 65

although the spectral gap σ(P) might not be known in advance, it 66

is possible to distributedly estimate it, see, e.g., [55]. However, such 67

rule of thumb might be very conservative. In fact, as noticed after 68

Algorithm 1, if all the fi’s are quadratic then the procedure reduces 69

to system 11. Thus: 70

Theorem 5 Consider Algorithm 1 with arbitrary initial conditions
x(0), quadratic cost functions, i.e., fi = 1

2
ai(x − bi)

2, ai > 0,
and ε = 1. Then ‖x(k)− x∗1‖ ≤ c (ρ(P))k for all k and for an
opportune positive c.

Proof Let y∗ := 1
N

∑
i aibi and z∗ := 1

N

∑
i ai, so that x∗ = 71

y∗

z∗
. Since y(k + 1) = Py(k) and z(k + 1) = Pz(k), given the 72

assumptions on P , there exist positive cy, cz independent on x(0) 73

s.t. |yi(k) − y∗| ≤ cy (ρ(P))k and |zi(k) − z∗| ≤ cz (ρ(P))k. The 74

claim thus follows considering that xi(k) = yi(k)
zi(k)

and that, since the 75

elements of P are non negative, all the zi(k) are strictly positive for 76

all k ≥ 0. 77

Thus, if the cost functions are close to be quadratic then the overall 78

rate of convergence is limited by the rate of convergence of the 79

embedded consensus algorithm. Moreover, the values of ε that still 80

guarantee convergence can be much larger than those dictated by the 81

rule of thumb (30). 82

V. NEWTON-RAPHSON CONSENSUS – THE MULTIDIMENSIONAL 83

CASE 84

In the previous sections we derived the algorithm for the scalar 85

case considering that, for scalar quadratic local costs, the optimum is 86

given by (10). We could derive the algorithm for the multidimensional 87

case using exactly the same intuitions: in fact considering multidi- 88

mensional quadratic local costs fi(x) =
1

2
(x−bi)TAi(x−bi), with 89

x := [x1 · · · xM]T and bi, Ai of suitable dimensions, it follows 90

immediately that x∗ =

(
1

N

N∑
i=1

Ai

)−1(
1

N

N∑
i=1

Aibi

)
. 91

A sensible extension of the scalar algorithm to a multidimensional 92

scenario is to replace f ′i(xi) with the gradient ∇fi(xi) and the 93

7

f ′′i (xi) with the full Hessian ∇2fi(xi). However, this is not the1

only possible choice, and indeed, by appropriately defining functions2

gi(xi) and Hi(xi), which play the role of gi(xi) and hi(xi) of3

the scalar case, one can obtain different procedures with different4

convergence properties and different computational/communication5

requirements. The following are (some) plausible choices for Hi:6

Hi
(
xi(k)

)
= ∇2fi

(
xi(k)

)
∈ RM×M (31)7

Hi
(
xi(k)

)
= diag

[
∇2fi

(
xi(k)

)]
8

=

∂2fi
∂x21

∣∣∣∣
xi(k)

0

. . .

0
∂2fi
∂x2M

∣∣∣∣
xi(k)

 ∈ RM×M(32)9

Hi
(
xi(k)

)
= IM ∈ RM×M . (33)10

Algorithm 2 Multidimensional case – Newton-Raphson, Jacobi and
Gradient Descent Consensus

(storage allocation and constraints on the parameters)
1: xi(k),yi(k) ∈ RM , Zi(k) ∈ RM×M for all i’s. ε ∈ (0, 1). Hi

defined in (31) or (32) or (33)
(initialization)

2: xi(0) = 0. yi(0) = gi
(
xi(−1)

)
= 0. Zi(0) = Hi

(
xi(−1)

)
=

I , for all i’s
(main algorithm)

3: for k = 1, 2, . . . do
4: for i = 1, . . . , N do
5: xi(k) = (1− ε)xi(k − 1) + ε

(
Zi(k − 1)

)−1
yi(k − 1)

6: ỹi(k) = yi(k − 1) + gi
(
xi(k − 1)

)
− gi

(
xi(k − 2)

)
7: Z̃i(k) = Zi(k − 1) +Hi

(
xi(k − 1)

)
−Hi

(
xi(k − 2)

)
8: end for
9: for i = 1, . . . , N do

10: yi(k) =
∑N
j=1 pij ỹj(k)

11: Zi(k) =
∑N
j=1 pij Z̃j(k)

12: end for
13: end for

The multidimensional version of Algorithm 1 is given by Algo-11

rithm 2, where Hi is left undefined and depending on its choice,12

it leads to a different version of the algorithm. The three proposed13

choices lead to the following algorithms:14

• Equation (31)→ Newton-Raphson Consensus (NRC): in this case
it is possible to rewrite Algorithm 2 as done in Section IV and show
that, for sufficiently small ε, xi(k) ≈ x(εk), where x(t) evolves
according to the continuous-time Newton-Raphson dynamics

ẋ(t) = −
[
∇2f

(
x(t)

)]−1

∇f
(
x(t)

)
,

which, analogously to its scalar version, can be shown to converge15

to the global optimum x∗.16

• Equation (32) → Jacobi Consensus (JC): choice (31) requires
agents to exchange information on O

(
M2
)

scalars, and this could
pose problems under heavy communication bandwidth constraints
and large M ’s. Choice (32) instead reduces the amount of information
to be exchanged via the underlying diagonalization process, also
called Jacobi approximation3. In this case, for sufficiently small ε,

3In centralized approaches, nulling the Hessian’s off-diagonal terms is a
well-known procedure, see, e.g., [56]. See also [57], [35] for other Jacobi
algorithms with different communication structures.

xi(k) ≈ x(εk), where x(t) evolves according to the continuous-time
dynamics

ẋ(t) = −
(

diag
[
∇2f

(
x(t)

)])−1

∇f
(
x(t)

)
,

which can be shown to converge to the global optimum x∗ with a 17

convergence rate that in general is slower than the Newton-Raphson 18

when the global cost function is skewed. 19

• Equation (33)→ Gradient Descent Consensus (GDC): this choice
is motivated in frameworks where the computation of the local second

derivatives
∂2fi
∂x2m

∣∣∣∣
xi(k)

is expensive, or where the second derivatives

simply might not be continuous. With this choice Algorithm 2 reduces
to a distributed gradient-descent procedure. In fact, for sufficiently
small ε, xi(k) ≈ x(εk) with x(t) evolving according to the
continuous-time dynamics

ẋ(t) = −∇f
(
x(t)

)
,

which one again is guaranteed to converge to the global optimum 20

x∗. 21

The following Table I summarizes the various costs of the previ- 22

ously proposed strategies. 23

Choice NRC,
Equa-

tion (31)

JC, Equa-
tion (32)

GDC,
Equa-

tion (33)

Computational Cost O
(
M3

)
O (M) O (M)

Communication Cost O
(
M2

)
O (M) O (M)

Memory Cost O
(
M2

)
O (M) O (M)

Table I
COMPUTATIONAL, COMMUNICATION AND MEMORY COSTS OF NRC, JC,

GDC PER SINGLE UNIT AND SINGLE STEP (LINES 3 TO 5 OF
ALGORITHM 2).

The following theorem characterizes the convergence properties of 24

Algorithm 2 (see definitions in page 13) and it is the multidimensional 25

version of Theorem 3: 26

Theorem 6 Consider Algorithm 2 with arbitrary initial condi-
tions xi(0), Hi defined in (31) or (32) or (33), and As-
sumption 1 holding true. Then for every open ball Bx∗

r :={
X ∈ RMN | ‖X − 1⊗ x∗‖ < r

}
there exist two positive con-

stants εr , cr such that if ε < εr then there exists γε > 0
s.t., for all k, X(0) ∈ Bx∗

r ⇒ ‖X(k)− 1⊗ x∗‖ ≤
cre
−γεk ‖X(0)− 1⊗ x∗‖ .

Proof The proof follows closely the proof of Theorem 3 thus in
the interest of space we provide just a simple sketch. Notice that it
involves the following alternative notation:

Π‖ :=
11T

N
⊗ IM , Π⊥ :=

(
IN −

11T

N

)
⊗ IM ,

X‖(k) := Π‖X(k), X⊥(k) := Π⊥X(k).

To prove the theorem we start recognizing that, for sufficiently 27

small ε, the convergence properties of the algorithm are the same as 28

8

the continuous time system1

εV̇ (t) = −V (t) +G
(
X(t)

)
εẆ (t) = −W (t) +H

(
X(t)

)
εẎ (t) = −KY (t) + (I −K)

[
G
(
X(t)

)
− V (t)

]
εŻ(t) = −KZ(t) + (I −K)

[
H
(
X(t)

)
−W (t)

]
ẋi(t) = −xi(t) +

(
Zi(t)

)−1
yi(t) i = 1, . . . , N

(34)2

where K := IMN−(P⊗IM) (in gray indications for the dimensions3

of the identity matrices) is again positive semidefinite. Then, with the4

substitutions D(t) := Y (t)− V (t), B(t) := Z(t)−W (t) one can5

prove as before that the boundary layer system of (34) admits the6

globally exponentially stable equilibrium7

lim
t→∞

V (t)
W (t)

D⊥(t)

B⊥(t)

 =

G(X)
H(X)

−Π⊥G(X)

−Π⊥H(X)

 . (35)8

The stability of the reduced system can instead be analyzed9

decomposing again its dynamics along the projections given by10

Π⊥ and Π‖, obtaining a continuous time non-linear cascade system11

equivalent to (26) whose global stability properties are ensured by12

Theorem 1 in [54]. Similarly to the scalar version of the algorithm,13

the dynamics of the average x(t) follow14

ẋ(t) = −x(t) +
(
H
(
x(t)

))−1

g
(
x(t)

)
. (36)15

For all the cases (31), (32) and (33), then, it follows that V (x) :=16

f(x)− f(x∗) is a Lyapunov function for the reduced system which17

guarantees exponential converges to x∗.18

We remark that εr in Theorem 6 depends also on the particular19

choice for Hi. The list of choices for Hi given by (31), (32) and (33)20

is not exhaustive. For example, future directions are to implement21

distributed quasi-Newton procedures. To this regard, we recall that22

approximations of the Hessians that do not maintain symmetry23

and positive definiteness or are bad conditioned require additional24

modification steps, e.g., through Cholesky factorizations [58].25

Finally, we notice that in scalar scenarios JC and NRC are26

equivalent, while GDC corresponds to algorithms requiring just the27

knowledge of first derivatives.28

VI. NUMERICAL EXAMPLES29

In Section VI-A we analyze the effects of different choices of ε on30

the scalar NRC on regular graphs and exponential cost functions. We31

then propose two machine learning problems in Section VI-B, used in32

Sections VI-C and VI-D, and numerically compare the convergence33

performance of the NRC, JC, GDC algorithms and other distributed34

convex optimization algorithms on random geometric graphs.35

A. Effects of the choice of ε36

Consider a ring network of S = 30 agents that communicate only37

to their left and right neighbors through the consensus matrix38

P =

0.5 0.25 0.25
0.25 0.5 0.25

. . .
. . .

. . .
0.25 0.5 0.25

0.25 0.25 0.5

 , (37)39

so that the spectral radius ρ(P) ≈ 0.99, implying a spectral gap40

σ(P) ≈ 0.01. Consider also scalar costs of the form fi(x) =41

cie
aix + die

−bix, i = 1, . . . , N, with ai, bi ∼ U [0, 0.2], ci, di ∼42

U [0, 1] and where U indicates the uniform distribution.43

Figure 1 compares the evolution of the local states xi of the 44

continuous system (14) for different values of ε. When ε is not 45

sufficiently small, then the trajectories of xi(t) are different even 46

if they all start from the same initial condition xi(0) = 0. As ε 47

decreases, the difference between the two time scales becomes more 48

evident and all the trajectories xi(k) become closer to the trajectory 49

given by the slow NR dynamics x(εk) given in (15) and guaranteed 50

to converge to the global optimum x∗.

0 200 400
−1.5

−0.5

0.5

k

x
i
(k

)

ε = 0.01

0 20004000

k

ε = 0.001

0 40000

k

ε = 0.0001

x∗

x(εk)

xi(k)

Figure 1. Temporal evolution of system (14) for different values of ε, with
N = 30. The black dotted line indicates x∗. The black solid line indicates
the slow dynamics x(εk) of Equation (15). As ε decreases. The difference
between the time scale of the slow and fast dynamics increases, and the local
states xi(k) converge to the manifold of x(εk).

51

In Figure 2 we address the robustness of the proposed algorithm 52

w.r.t. the choice of the initial conditions. In particular, Figure 2(a) 53

shows that if α = β = 0 then the local states xi(t) converge to the 54

optimum x∗ for arbitrary initial conditions xi(0), as guaranteed by 55

Theorem 3. Figure 2(b) considers, besides different initial conditions 56

xi(0), also perturbed initial conditions v(0), w(0), y(0), z(0) lead- 57

ing to non null α’s and β’s. More precisely we apply Algorithm 1 to 58

different random initial conditions s.t. α, β ∼ U [−σ, σ]. Figure 2(b) 59

shows the boxplots of the errors xi(+∞)−x∗ for different σ’s based 60

on 300 Monte Carlo runs with ε = 0.01 and N = 30. 61

0 200 400
−2

−1

0

1

2

k

x
i
(k

)

x∗

x(εk)

xi(k)

(a) Time evolution of the local states
xi(k) with v(0) = w(0) =
y(0) = z(0) = 0 and xi(0) ∼
U [−2, 2].

10−5 10−4 10−3
−0.05

0

0.05

σ

x
i
(+
∞

)
−
x
∗

(b) Empirical distribution of the
errors xi(+∞)−x∗ under artifi-
cially perturbed initial conditions
α(0), β(0) ∼ U [−σ, σ] for dif-
ferent values of σ.

Figure 2. Characterization of the dependency of the performance of
Algorithm 1 on the initial conditions. In all the experiments ε = 0.01 and
N = 30.

B. Optimization problems 62

The first problem considered is the distributed training of a 63

Binomial-Deviance based classifier, to be used, e.g., for spam- 64

nonspam classification tasks [59, Chap. 10.5]. More precisely, we 65

consider a database of emails E, where j is the email index, 66

yj = −1, 1 denotes if the email j is considered spam or not, 67

χj ∈ RM numerically summarizes the M features of the j-th email 68

9

(how many times the words “money”, “dollars”, etc., appear). If the1

E emails come from different users that do not want to disclose2

their private information, then it is meaningful to solve exploiting the3

distributed optimization algorithms described in the previous sections.4

More specifically, letting x = (x, x0) ∈ RM × R represents a5

generic classification hyperplane, training a Binomial-Deviance based6

classifier corresponds to solve a distributed optimization problem7

where the local cost functions are given by:8

fi (x) :=
∑
j∈Ei

log
(

1+exp
(
−yj

(
χTj x+ x0

)))
+γ ‖x‖22 . (38)9

where Ei is the set of emails available to agent i,10

E = ∪Ni=1Ei, and γ is a global regularization parameter. In11

the following numerical experiments we consider |E| = 500012

emails from the spam-nonspam UCI repository, available at13

http://archive.ics.uci.edu/ml/datasets/Spambase,14

randomly assigned to 30 different users communicating as in graph of15

Figure 3. For each email we consider M = 3 features (the frequency16

of words “make”, “address”, “all”) so that the corresponding17

optimization problem is 4-dimensional.18

The second problem considered is a regression problem19

inspired by the UCI Housing dataset available at20

http://archive.ics.uci.edu/ml/datasets/Housing.21

In this task, an example χj ∈ RM−1 is vector representing some22

features of a house (e.g., per capita crime rate by town, index23

of accessibility to radial highways, etc.), and yj ∈ R denotes24

the corresponding median monetary value of of the house. The25

objective is to obtain a predictor of house value based on these26

data. Similarly as the previous example, if the datasets come from27

different users that do not want to disclose their private information,28

then it is meaningful to solve exploiting the distributed optimization29

algorithms. This problem can be formulated as a convex regression30

problem on the following local cost functions:31

fi (x) :=
∑
j∈Ei

(
yj − χTj x− x0

)2∣∣yj − χTj x− x0∣∣+ β
+ γ ‖x‖22 . (39)32

where x = (x, x∗0) ∈ RM−1 × R is the vector of coefficient for the33

linear predictor ŷ = χTx + x0 and γ is a common regularization34

parameter. The loss function (·)2
|·|+β corresponds to a smooth version35

of the Huber robust loss (being C2) which is employed to minimize36

the effects of outliers.37

The loss function (·)2
|·|+β corresponds to a smooth version of the38

Huber robust loss (being C2), with β a parameter dictating for39

which arguments the loss is pseudo-linear or pseudo-quadratic and40

to be manually chosen to minimize the effects of outliers. In our41

experiments we used M = 4 features, β = 50, γ = 1, and |E| = 50642

total number of examples in the dataset randomly assigned to the43

N = 30 users communicating as in the graph of Figure 3.44

In both the previous problems the optimum, in the following indi-45

cated for simplicity with x∗, has been computed with a centralized46

NR with the termination rule “stop when in the last 5 steps the norm47

of the guessed x∗ changed less than 10−9%”.48

C. Comparison of the NRC, JC and GDC algorithms49

In Figure 4 we analyze the performance of the three proposed NRC,
JC and GDC algorithms defined by Equations (31), (32) or (33) in
Algorithm 2 in terms of the relative Mean Square Error (MSE)

MSE (k) :=
1

N

N∑
i=1

‖xi(k)− x∗‖2/‖x∗‖2

Figure 3. Random geometric graph exploited in the simulations relative to
the optimization problem (38). For this graph ρ(P) ≈ 0.9338, with P the
matrix of Metropolis weights.

for the classification and regression optimization problem described 50

above. The consensus matrix P has been by selecting the Metropolis- 51

Hastings weights which are consistent with the communication graph 52

[60]. Panels 4(a) and 4(c) report the MSE obtained at a specific 53

iteration (k = 40) by the various algorithms, as a function of ε. 54

These plots thus inspect the sensitivity w.r.t. the choice of the tuning 55

parameters. Consistently with the theorems in the previous section, 56

the GDC and JC algorithms are stable only for ε sufficiently small, 57

while NRC exhibit much larger robustness and best performance for 58

ε = 1. Panels 4(b) and 4(d) instead report the evolutions of the 59

relative MSE as a function of the number of iterations k for the 60

optimally tuned algorithms. 61

10−3 10−2 10−1 100
10−7

10−4

10−1

ε

M
SE

(4
0
)

NRC
JC
GDC

(a) Relative MSE at a given time k
as a function of the parameter ε for
classification problem (38).

0 10 20 30 40
10−6

10−3

100

k (for ε = ε∗)

M
SE

(k
)

NRC
JC
GDC

(b) Relative MSE as a function of
the time k, with the parameter ε
chosen as the best from Figure 4(a)
for classification problem (38).

10−3 10−2 10−1 100
10−7

10−4

10−1

ε

M
SE

(4
0
)

NRC
JC
GDC

(c) Relative MSE at a given time k
as a function of the parameter ε for
regression problem (39).

0 10 20 30 40
10−7

10−4

10−1

k (for ε = ε∗)

M
SE

(k
)

NRC
JC
GDC

(d) Relative MSE as a function of
the time k, with the parameter ε
chosen as the best from Figure 4(c)
for regression problem (39).

Figure 4. Convergence properties of Algorithm 2 for the problems described
in Section VI-B and for different choices of Hi(·). Choice (31) corresponds
to the NRC algorithm, (32) to the JC, (33) to the GDC.

We notice that the differences between NRC and JC are evident but 62

not resounding, due to the fact that the Jacobi approximations are in 63

this case a good approximation of the analytical Hessians. Conversely, 64

GDC presents a slower convergence rate which is a known drawback 65

of gradient descent algorithms. 66

10

D. Comparisons with other distributed convex optimization algo-1

rithms2

We now compare Algorithm 1 and its accelerated version, referred3

as Fast Newton-Raphson Consensus (FNRC) and described in detail4

below in Algorithm 3), with three popular distributed convex opti-5

mization methods, namely the DSM, the Distributed Control Method6

(DCM) and the ADMM, described respectively in Algorithm 4, 57

and 6. The following discussion provides some details about these8

strategies.9

• FNRC is an accelerated version of Algorithm 1 that inherits10

the structure of the so called second order diffusive schedules, see,11

e.g., [61], and exploits an additional level of memory to speed up the12

convergence properties of the consensus strategy. Here the weights13

multiplying the gi’s and Hi’s are necessary to guarantee exact14

tracking of the current average, i.e.
∑
i yi(k) =

∑
i gi
(
x(k − 1)

)
15

for all k. As suggested in [61], we set the ϕ that weights the gradient16

and the memory to ϕ =
2

1 +
√

1− ρ(P)2
. This guarantees second17

order diffusive schedules to be faster than first order ones (even if18

this does not automatically imply the FNRC to be faster than the19

NRC). This setting can be considered a valid heuristic to be used20

when ρ(P) is known. For the graph in Figure 3, ϕ ≈ 1.4730.

Algorithm 3 Fast Newton-Raphson Consensus
1: storage allocation, constraints on the parameters and initialization

as in Algorithm 1
2: for k = 1, 2, . . . do
3: for i = 1, . . . , N do
4: xi(k) = (1− ε)xi(k − 1) + ε

(
Zi(k − 1)

)−1
yi(k − 1)

5: ỹi(k) = yi(k−1)+
1

ϕ
gi
(
xi(k−1)

)
−gi

(
xi(k−2)

)
−

1− ϕ
ϕ

gi
(
xi(k − 3)

)
6: Z̃i(k) = Zi(k − 1) +

1

ϕ
Hi
(
xi(k − 1)

)
− Hi

(
xi(k −

2)
)
− 1− ϕ

ϕ
Hi
(
xi(k − 3)

)
7: end for
8: for i = 1, . . . , N do
9: yi(k) = ϕ

(∑N
j=1 pij ỹj(k)

)
+ (1− ϕ)yi(k − 2)

10: Zi(k) = ϕ
(∑N

j=1 pijZ̃j(k)
)

+ (1− ϕ)Zi(k − 2)

11: end for
12: end for

21

• DSM, as proposed in [29], alternates consensus steps on the22

current estimated global minimum xi(k) with subgradient updates23

of each xi(k) towards the local minimum. To guarantee the con-24

vergence, the amplitude of the local subgradient steps should ap-25

propriately decrease. Algorithm 4 presents a synchronous DSM26

implementation, where % is a tuning parameter and P is the matrix27

of Metropolis-Hastings weights.28

• DCM, as proposed in [41], differentiates from the gradient29

searching because it forces the states to the global optimum by30

controlling the subgradient of the global cost. This approach views the31

subgradient as an input/output map and uses small gain theorems to32

guarantee the convergence property of the system. Again, each agents33

i locally computes and exchanges information with its neighbors,34

collected in the set Ni := {j | (i, j) ∈ E}. DCM is summarized35

in Algorithm 5, where µ, ν > 0 are parameters to be designed to36

ensure the stability property of the system. Specifically, µ is chosen37

in the interval 0 < µ <
2

2 maxi={1,...,N} |Ni|+ 1
to bound the38

induced gain of the subgradients. Also here the parameters have been39

manually tuned for best convergence rates.40

Algorithm 4 DSM [29]
(storage allocation and constraints on parameters)

1: xi(k) ∈ RN for all i. % ∈ R+

(initialization)
2: xi(0) = 0

(main algorithm)
3: for k = 0, 1, . . . do
4: for i = 1, . . . , N do

5: xi(k + 1) =

N∑
j=1

pij
(
xj(k)− %

k
∇fj

(
xj(k)

))
6: end for
7: end for

Algorithm 5 DCM [41]
(storage allocation and constraints on parameters)

1: xi(k),zi(k) ∈ RM , for all i. µ, ν ∈ R+

(initialization)
2: xi(0) = zi(0) = 0 for all i

(main algorithm)
3: for k = 0, 1, . . . do
4: for i = 1, . . . , N do
5: zi(k + 1) = zi(k) + µ

∑
j∈Ni

(
xi(k)− xj(k)

)
6: xi(k + 1) = xi(k) + µ

∑
j∈Ni

(
xj(k) − xi(k)

)
+

µ
∑
j∈Ni

(
zj(k)− zi(k)

)
− µ ν∇fi

(
xi(k)

)
7: end for
8: end for

• ADMM, instead, requires the augmentation of the system through
additional constraints that do not change the optimal solution but al-
low the Lagrangian formalism. There exist different implementations
of ADMM in distributed contexts, see, e.g., [7], [62], [12, pp. 253-
261]. For simplicity we consider the following formulation,

min
x1,...,xN

N∑
i=1

fi(xi)

s.t. z(i,j) = xi, ∀i ∈ N , ∀(i, j) ∈ E ,
where the auxiliary variables z(i,j) correspond to the different links
in the network, and where the local Augmented Lagrangian is given
by

Li(xi, k) := fi (xi)+
∑
j∈Ni

y(i,j)
(
xi−z(i,j)

)
+
∑
j∈Ni

δ

2

∥∥xi−z(i,j)∥∥2,
with δ a tuning parameter (see [63] for a discussion on how to tune 41

it) and the y(i,j)’s Lagrange multipliers. 42

Figure 5 then compares the previously cited algorithms as did in 43

Figure 4. The first panel thus reports the relative MSE of the various 44

algorithms at a given number of iterations (k = 40) as a function 45

of the parameters. The second panel instead reports the temporal 46

evolution of the relative MSE for the case of optimal tuning. 47

We notice that the DCM and the DSM are both much slower 48

than the NRC, FNRC and ADMM. Moreover, both the NRC and its 49

accelerated version converge faster than the ADMM, even if not tuned 50

at their best. These numerical examples seem to indicate that the 51

proposed NRC might be a viable alternative to the ADMM, although 52

further comparisons are needed to strengthen this claim. Moreover, 53

a substantial potential advantage of NRC as compared to ADMM is 54

that the former can be readily adapted to asynchronous and time- 55

varying graphs, as preliminary made in [64]. Moreover, as in the 56

11

10−3 10−2 10−1 100
10−14
10−12
10−10
10−8
10−6
10−4
10−2

ε

M
SE

(4
0
)

NRC
FNRC

10−1 100 101 102

ρ

ADMM

10−3 10−2 10−1 100

%

DSM

10−2 10−1

µ

DCM

(a) Relative MSE at a given time k as a function of the algorithms parameters
for problem (38). For the DCM, ν = 1.7.

0 10 20 30 40
10−14
10−12
10−10
10−8
10−6
10−4
10−2

k

M
SE

(k
)

ADMM
NRC
FNRC

(b) Relative MSE as a function of the time k for the three fastest
algorithms for problem (38). Their parameters are chosen as the best
ones from Figure 5(a).

10−3 10−2 10−1 100

10−14
10−12
10−10
10−8
10−6
10−4
10−2

ε

M
SE

(4
0
)

NRC
FNRC

10−1 100 101 102

ρ

ADMM

10−3 10−2 10−1 100

%

DSM

10−2 10−1

µ

DCM

(c) Relative MSE at a given time k as a function of the algorithms parameters
for problem (39). For the DCM, ν = 1.7.

0 10 20 30 40
10−14
10−12
10−10
10−8
10−6
10−4
10−2

k

M
SE

(k
)

ADMM
NRC
FNRC

(d) Relative MSE as a function of the time k for the three fastest
algorithms for problem (39). Their parameters are chosen as the best
ones from Figure 5(c).

Figure 5. Convergence properties of Algorithm 2 for the problems described
in Section VI-B.

Algorithm 6 ADMM [7, pp. 253-261]
(storage allocation and constraints on parameters)

1: xi(k),z(i,j)(k),y(i,j)(k) ∈ RM , δ ∈ (0, 1)
(initialization)

2: xi(k) = z(i,j)(k) = y(i,j)(k) = 0
(main algorithm)

3: for k = 0, 1, . . . do
4: for i = 1, . . . , N do
5: xi(k + 1) = arg min

xi

Li(xi, k)

6: for j ∈ Ni do
7: z(i,j)(k+1) =

1

2δ

(
y(i,j)(k)+y(j,i)(k)

)
+

1

2

(
xi(k+

1) + xj(k + 1)
)

8: y(i,j)(k+1) = y(i,j)(k)+δ
(
xi(k+1)−z(i,j)(k+1)

)
9: end for

10: end for
11: end for

case of the FNRC, the strategy can implement any improved linear 1

consensus algorithm. 2

VII. CONCLUSION 3

We proposed a novel distributed optimization strategy suitable for 4

convex, unconstrained, multidimensional, smooth and separable cost 5

functions. The algorithm does not rely on Lagrangian formalisms 6

and acts as a distributed Newton-Raphson optimization strategy by 7

repeating the following steps: agents first locally compute and update 8

second order Taylor expansions around the current local guesses and 9

then they suitably combine them by means of average consensus 10

algorithms to obtain a sort of approximated Taylor expansion of the 11

global cost. This allows each agent to infer a local Newton direction, 12

used to locally update the guess of the global minimum. 13

Importantly, the average consensus protocols and the local updates 14

steps have different time-scales, and the whole algorithm is proved 15

to be convergent only if the stepsize is sufficiently slow. Numerical 16

simulations show that, if suitably tuned, the algorithm is generally 17

faster than DSMs and competitive with respect to ADMMs. 18

The set of open research paths is extremely vast. We envisage 19

three main avenues. The first one is to study how the agents can 20

dynamically and locally tune the speed of the local updates w.r.t. the 21

consensus process, namely how to tune their local step-size εi. In fact 22

large values of ε gives faster convergence but might lead to instability. 23

A second one is to let the communication protocol be asynchronous: 24

in this regard we notice that some preliminary attempts can be found 25

in [64]. A final branch is about the analytical characterization of the 26

rate of convergence of the proposed strategies and the extensions to 27

non-smooth convex functions. 28

REFERENCES 29

[1] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato, 30

“Newton-Raphson consensus for distributed convex optimization,” in 31

IEEE Conference on Decision and Control and European Control 32

Conference, Dec. 2011, pp. 5917–5922. 33

[2] ——, “Multidimensional Newton-Raphson consensus for distributed 34

convex optimization,” in American Control Conference, 2012. 35

[3] N. Z. Shor, Minimization Methods for Non-Differentiable Functions. 36

Springer-Verlag, 1985. 37

[4] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and 38

Optimization. Athena Scientific, 2003. 39

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge 40

University Press, 2004. 41

12

[6] J. N. Tsitsiklis, “Problems in decentralized decision making and1

computation,” Ph.D. dissertation, Massachusetts Institute of Technology,2

1984.3

[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-4

tion: Numerical Methods. Athena Scientific, 1997.5

[8] D. P. Bertsekas, Network Optimization: Continuous and Discrete6

Models. Belmont, Massachusetts: Athena Scientific, 1998.7

[9] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed8

simplex algorithm for degenerate linear programs and multi-agent9

assignments,” Automatica, vol. 48, no. 9, pp. 2298 – 2304, 2012.10

[10] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier11

Methods. Boston, MA: Academic Press, 1982.12

[11] M. R. Hestenes, “Multiplier and gradient methods,” Journal of13

Optimization Theory and Applications, vol. 4, no. 5, pp. 303–320,14

1969.15

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed16

Optimization and Statistical Learning via the Alternating Direction17

Method of Multipliers,” Stanford Statistics Dept., Tech. Rep., 2010.18

[13] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast19

Consensus by the Alternating Direction Multipliers Method,” IEEE20

Transactions on Signal Processing, vol. 59, no. 11, pp. 5523–5537,21

Nov. 2011.22

[14] B. He and X. Yuan, “On the O(1/t) convergence rate of alternating23

direction method,” SIAM Journal on Numerical Analysis (to appear),24

2011.25

[15] E. Wei and A. Ozdaglar, “Distributed Alternating Direction Method of26

Multipliers,” in IEEE Conference on Decision and Control, 2012.27

[16] J. a. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed ADMM for28

Model Predictive Control and Congestion Control,” in IEEE Conference29

on Decision and Control, 2012.30

[17] D. Jakovetić, J. a. Xavier, and J. M. F. Moura, “Cooperative convex31

optimization in networked systems: Augmented lagrangian algorithms32

with directed gossip communication,” IEEE Transactions on Signal33

Processing, vol. 59, no. 8, pp. 3889 – 3902, Aug. 2011.34

[18] V. F. Dem’yanov and L. V. Vasil’ev, Nondifferentiable Optimization.35

Springer - Verlag, 1985.36

[19] B. Johansson, “On Distributed Optimization in Networked Systems,”37

Ph.D. dissertation, KTH Royal Institute of Technology, 2008.38

[20] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized39

Gossip Algorithms,” IEEE Transactions on Information Theory / ACM40

Transactions on Networking, vol. 52, no. 6, pp. 2508–2530, June 2006.41

[21] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless42

communication and networking,” IEEE Transactions on Signal43

Processing, vol. 58, no. 12, pp. 6369 – 6386, Dec. 2010.44

[22] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for45

nondifferentiable optimization,” SIAM Journal on Optimization, vol. 12,46

no. 1, pp. 109–138, 2001.47

[23] A. Nedić, D. Bertsekas, and V. Borkar, “Distributed asynchronous48

incremental subgradient methods,” Studies in Computational49

Mathematics, vol. 8, pp. 381–407, 2001.50

[24] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate51

analysis for dual subgradient methods,” SIAM Journal on Optimization,52

vol. 19, no. 4, pp. 1757 – 1780, 2008.53

[25] K. C. Kiwiel, “Convergence of approximate and incremental subgradient54

methods for convex optimization,” SIAM Journal on Optimization,55

vol. 14, no. 3, pp. 807–840, 2004.56

[26] D. Blatt, A. Hero, and H. Gauchman, “A convergent incremental57

gradient method with a constant step size,” SIAM Journal on58

Optimization, vol. 18, no. 1, pp. 29–51, 2007.59

[27] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for60

distributed resource allocation,” Journal of optimization theory and61

applications, vol. 129, no. 3, pp. 469 – 488, 2006.62

[28] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Incremental stochastic63

subgradient algorithms for convex optimzation,” SIAM Journal on64

Optimization, vol. 20, no. 2, pp. 691–717, 2009.65

[29] A. Nedić and A. Ozdaglar, “Distributed Subgradient Methods for66

Multi-Agent Optimization,” IEEE Transactions on Automatic Control,67

vol. 54, no. 1, pp. 48–61, 2009.68

[30] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental69

subgradient method for distributed optimization in networked systems,”70

SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–1170, 2009.71

[31] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent72

optimization with state-dependent communication,” Mathematical73

Programming, vol. 129, no. 2, pp. 255 – 284, 2011.74

[32] A. Nedić, “Asynchronous Broadcast-Based Convex Optimization over75

a Network,” IEEE Transactions on Automatic Control, vol. 56, no. 6,76

pp. 1337 – 1351, June 2010.77

[33] E. Ghadimi, I. Shames, and M. Johansson, “Accelerated Gradient 78

Methods for Networked Optimization,” IEEE Transactions on Signal 79

Processing (under review), 2012. 80

[34] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A Distributed Newton 81

Method for Network Optimization,” in IEEE Conference on Decision 82

and Control. IEEE, 2009, pp. 2736–2741. 83

[35] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated 84

Dual Descent for Network Optimization,” in American Control 85

Conference, 2011. 86

[36] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A Distributed Newton Method 87

for Network Utility Maximization,” in IEEE Conference on Decision 88

and Control, 2010, pp. 1816 – 1821. 89

[37] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact newton 90

methods,” SIAM Journal on Numerical, vol. 19, no. 2, pp. 400–408, 91

1982. 92

[38] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained Consensus 93

and Optimization in Multi-Agent Networks,” IEEE Transactions on 94

Automatic Control, vol. 55, no. 4, pp. 922–938, Apr. 2010. 95

[39] M. Zhu and S. Martínez, “On Distributed Convex Optimization Under 96

Inequality and Equality Constraints,” IEEE Transactions on Automatic 97

Control, vol. 57, no. 1, pp. 151–164, 2012. 98

[40] C. Fischione, “F-Lipschitz Optimization with Wireless Sensor Networks 99

Applications,” IEEE Transactions on Automatic Control, vol. 56, no. 10, 100

pp. 2319 – 2331, 2011. 101

[41] J. Wang and N. Elia, “Control approach to distributed optimization,” 102

in Forty-Eighth Annual Allerton Conference, vol. 1, no. 1. Allerton, 103

Illinois, USA: IEEE, Sept. 2010, pp. 557–561. 104

[42] N. Freris and A. Zouzias, “Fast Distributed Smoothing for Network 105

Clock Synchronization,” in IEEE Conference on Decision and Control, 106

2012. 107

[43] F. Garin and L. Schenato, A survey on distributed estimation and 108

control applications using linear consensus algorithms. Springer, 109

2011, vol. 406, ch. 3, pp. 75–107. 110

[44] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2001. 111

[45] F. Fagnani and S. Zampieri, “Randomized consensus algorithms 112

over large scale networks,” IEEE Journal on Selected Areas in 113

Communications, vol. 26, no. 4, pp. 634–649, May 2008. 114

[46] A. D. Domínguez-García, C. N. Hadjicostis, and N. H. Vaidya, 115

“Distributed Algorithms for Consensus and Coordination in the 116

Presence of Packet-Dropping Communication Links Part I : Statistical 117

Moments Analysis Approach,” Coordinated Sciences Laboratory, 118

University of Illinois at Urbana-Champaign, Tech. Rep., 2011. 119

[47] Y. C. Ho, L. Servi, and R. Suri, “A class of center-free resource 120

allocation algorithms,” Large Scale Systems, vol. 1, no. 1, pp. 51 – 62, 121

1980. 122

[48] K. Tanabe, “Global analysis of continuous analogues of the Levenberg- 123

Marquardt and Newton-Raphson methods for solving nonlinear 124

equations,” Annals of the Institute of Statistical Mathematics, vol. 37, 125

no. 1, pp. 189–203, 1985. 126

[49] R. Hauser and J. Nedić, “The Continuous Newton-Raphson Method Can 127

Look Ahead,” SIAM Journal on Optimization, vol. 15, pp. 915–925, 128

2005. 129

[50] P. Kokotović, H. K. Khalil, and J. O’Reilly, Singular Perturbation 130

Methods in Control: Analysis and Design, ser. Classics in applied 131

mathematics. SIAM, 1999, no. 25. 132

[51] L. Xiao, S. Boyd, and S. Lall, “A Scheme for Robust Distributed Sensor 133

Fusion Based on Average Consensus,” in International symposium on 134

Information processing in sensor networks, 2005, pp. 63–70. 135

[52] S. Bolognani, S. Del Favero, L. Schenato, and D. Varagnolo, 136

“Consensus-based distributed sensor calibration and least-square 137

parameter identification in WSNs,” International Journal of Robust and 138

Nonlinear Control, vol. 20, no. 2, pp. 176–193, Jan. 2010. 139

[53] A. R. Teel, D. Nesic, and P. V. Kokotovic, “A note on input-to-state 140

stability of sampled-data nonlinear systems,” in IEEE Conference on 141

Decision and Control, vol. 3, Dec. 1998, pp. 2473–2478. 142

[54] V. Sundarapandian, “Global asymptotic stability of nonlinear cascade 143

systems,” Applied Mathematics Letters, vol. 15, no. 3, pp. 275–277, 144

Apr. 2002. 145

[55] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a 146

graph: A distributed algorithm,” Automatica, vol. 48, no. 1, pp. 15–24, 147

Jan. 2012. 148

[56] S. Becker and Y. Le Cun, “Improving the convergence of back- 149

propagation learning with second order methods,” University of Toronto, 150

Tech. Rep., Sept. 1988. 151

[57] S. Athuraliya and S. H. Low, “Optimization flow control with Newton 152

like algorithm,” Telecommunication Systems, vol. 15, pp. 345–358, 153

2000. 154

13

[58] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed. John1

Hopkins University Press, 1996.2

[59] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical3

Learning: Data Mining, Inference, and Prediction, 2nd ed. New York:4

Springer, 2001.5

[60] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus6

with least-mean-square deviation,” Journal of Parallel and Distributed7

Computing, vol. 67, no. 1, pp. 33–46, Jan. 2007.8

[61] S. Muthukrishnan, B. Ghosh, and M. H. Schultz, “First and9

Second Order Diffusive Methods for Rapid, Coarse, Distributed Load10

Balancing,” Theory of Computing Systems, vol. 31, no. 4, pp. 331 –11

354, 1998.12

[62] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in13

Ad Hoc WSNs With Noisy Links - Part I: Distributed Estimation14

of Deterministic Signals,” IEEE Transactions on Signal Processing,15

vol. 56, pp. 350–364, Jan. 2008.16

[63] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “On the Optimal17

Step-size Selection for the Alternating Direction Method of Multipliers,”18

in Necsys, 2012.19

[64] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,20

“Asynchronous Newton-Raphson Consensus for Distributed Convex21

Optimization,” in Necsys 2012, 2012.22

APPENDIX - ADDITIONAL NOTATION 23

(scalar case) 24

gi
(
xi(k)

)
:= f ′′i

(
xi(k)

)
xi(k)− f ′i

(
xi(k)

)
25

hi
(
xi(k)

)
:= f ′′i

(
xi(k)

)
26

x(k) := [x1(k) · · · xN (k)]T 27

y(k) := [y1(k) · · · yN (k)]T 28

z(k) := [z1(k) · · · zN (k)]T 29

g
(
x(k)

)
:=

[
g1
(
x1(k)

)
· · · gN

(
xN (k)

)]T
30

h
(
x(k)

)
:=

[
h1

(
x1(k)

)
· · · hN

(
xN (k)

)]T
31

32

(vectorial case) 33

xi(k) := [xi,1(k) · · · xi,M (k)]T ∈ RM 34

X(k) :=
[
x1(k)T · · · xN (k)T

]T
∈ RMN

35

∇f
(
xi(k)

)
:=

[
∂f

∂x1

∣∣∣∣
xi(k)

· · · ∂f

∂xM

∣∣∣∣
xi(k)

]T
∈ RM 36

∇2f (xi(k)) :=

. . .

...

· · · ∂2f

∂xm∂xn

∣∣∣∣
xi(k)

· · ·

...
. . .

∈ RM×M 37

Y (k) :=
[
y1(k)T · · · yN (k)T

]T
∈ RMN

38

Z(k) :=
[
Z1(k)T · · · ZN (k)T

]T
∈ RMN×M

39

Hi
(
xi(k)

)
:= Equations (31) or (32) or (33), ∈ RM×M 40

H
(
X(k)

)
:=

[
H1

(
x1(k)

)T · · · HN(xN (k)
)T]T ∈ RMN×M

41

gi
(
xi(k)

)
:= Hi

(
xi(k)

)
xi(k)−∇fi

(
xi(k)

)
∈ RM 42

G
(
X(k)

)
:=

[
g1
(
x1(k)

)T · · · gN(xN (k)
)T]T ∈ RMN

43

