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Abstract— Women affected by pain during penetrative sexual
intercourse are often treated using fixed-size vaginal dilators
that are regularly perceived as uncomfortable and leading
to premature treatment drop-outs. These dilators could be
improved by making them adaptive, i.e., able to exert dynami-
cally different pressures on the vaginal duct to simultaneously
guarantee comfort levels and achieve the medical dilation
objectives. Implementing feedback control would then benefit
from models that connect the patients’ comfort levels with their
experienced physiological stimuli.

Here we address the problem of data-driven quantitative
modelling of pain/pleasure self-assessments obtained through
medical trials. More precisely, we consider time-series records
of Pelvic Floor Muscles (PFM) pressure, vaginal dilation,
and pain/pleasure evaluations, and model the relations among
these quantities using statistical analysis tools. Besides this,
we also address the important issue of the individualization
of these models: different persons may respond differently,
but these variations may sometimes be so small that it may
be beneficial to learn from several individuals simultaneously.
We here numerically validate the previous claim by verifying
that clustering patients in groups may lead, from a data-driven
point of view, to models with a significantly improved statistical
performance.

Index Terms— dyspareunia, modelling of psychological sys-
tems, support vector classification, clustering

I. INTRODUCTION

Motivations: Pain during penetrative sexual intercourse
for prolonged periods of time as a consequence of Genito-
pelvic pain / penetration disorders (GPPPD) or other con-
ditions is estimated to affect 30-40% of women at least
once in their life [1, Chap. 2]. The pain can be caused by
physiological causes (e.g., complications after cervix cancer
surgeries, vaginal radiotherapies, Mayer-Rokitansky-Küster-
Hauser syndromes, male-to-female gender confirmation surg-
eries) and psychosocial causes (e.g., traumatic sexual ex-
periences) [1, Chap. 3]. Observations from practitioners
indicate also that psychological mechanisms (e.g., anxiety,
catastrophising pain and avoidance of sexual intimacy) and
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interpersonal factors (e.g., hostile partner responses, rela-
tionship conflict) may maintain, prolong and exacerbate the
suffering.

Treatments may combine psychological (e.g., Cognitive
Behavioral Therapies (CBTs)) and physiological treatments,
the latter potentially including stretching the vaginal duct,
desensitizing the vestibulum, and relaxing the pelvic floor
muscles [2]–[4] through vaginal dilators. However, since
these therapies are perceived as invasive, lengthy and un-
comfortable, patients often delay, avoid or stop treatment and
hence prolong their suffering [5].

Improving these treatments is however non-trivial: on the
one hand patients shall feel sufficiently comfortable to avoid
dropping out. On the other hand there is the need to dilate
the duct and stimulate the pelvic floor as much as possible
to achieve the medical target while making the treatment
as temporally short as possible. A primary issue is thus to
design individualized optimal dilation strategies that account
for this intrinsic tradeoff and that can be executed using
vaginal dilators that are adaptable in size.

Several adaptable dilators have been developed: The Vagi-
nal Pressure Inducer (VPI), developed at Maastricht Univer-
sity hospital, consists of a flexible balloon whose size can
be gradually adjusted by inflating it with warm water [6].
Another example is the Milli dilator [7], a dildo that can
expand its width (controlled by buttons on its base) and hence
responds to the need for a more gradual and gentle stretching
of the duct. These solutions, however, do not implement
feedback concepts, i.e., do not adapt the dilation patterns
to the patient’s response starting from measurements, ref-
erences, and –potentially– quantitative models connecting
stimuli with physiological and psychological outcomes. In
contrast, feedback control may simultaneously accommodate
a patient’s physiological response and medical needs while
preventing pain and anxiety. An expected positive side effect
is increased motivation due to increasing the patients’ self-
efficacy.

To be able to compute individual and adaptive vaginal dila-
tion patterns, there is the need for individualized quantitative
models that describe how patients will most likely respond
to vaginal dilation and possibly other stimuli in conjunction
with measurements of physiological and subjective signals.
Ideally, these models should enable not only implementing
model-based control strategies, but also interpretation by
both medical personnel and patients.

Existing models in the literature: The medical literature
comprises several physiological models that analyse some



cause-effect implications (e.g., [2], [8]–[17]). But all these
models describe static cause-effect relationships and lack
describing the dynamics of the processes. Towards closing
this gap, data-driven dynamical models of female response
to vaginal dilation were derived in [18], where time-series of
pelvic floor pressure collected from healthy patients during
ad-hoc medical trials were used to investigate which type of
dynamical models can accurately describe the recorded data.
[18], however, focused on physiological responses, leaving

the psychological side completely unexplored.
Only few models the psychological or subjective response

of women to vaginal dilation are available. The relations
between sexual arousal and sexual desire seem to be complex
and the existing literature orbits around the Basson’s non-
linear model of the female sexual response [19], that states
that the sexual desire is affected by several psychological
inputs (e.g., satisfaction with the relationship, self-image,
previous sexual experiences), so that the desire is not just
governed by biological factors. Indeed in this model the
goal of sexual activity for women is not necessarily orgasm,
but rather personal satisfaction, which can manifest itself as
physical satisfaction (orgasm) and/or emotional satisfaction
(e.g., a feeling of intimacy and connection with a partner).
As for how the sexual desire relates to sexual arousal, some
psychological factors (e.g., desire for increased emotional
closeness and intimacy, etc.) may trigger a predisposition to
participate in sexual activity. Sexual arousal may be triggered
by conversations, music, reading or viewing erotic materials,
or direct stimulation, which may lead to an increasing desire
to continue the activity. Nonetheless, some other psycholog-
ical factors may work as turn-off factors and diminish (up
to vanishing) experienced sexual arousal and desire.

The alternative Masters & Johnson’s sexual response
model [20] distinguishes between various phases (“excite-
ment / arousal”, “plateau”, “orgasm” and “resolution”): it
describes the physiological responses of the female body
in all these phases, but does not include quantitative de-
scriptions of the dynamics of the system. Both Basson’s
and Masters & Johnson’s models moreover focus on sexual
responses of healthy women that do not suffer from pain
during penetrative sexual intercourses. Hence, variables such
as perceived fear or pain are not included.

For now the unique dynamical model describing the inter-
play of several key variables seems to be published in [21]
and consists of two distinct loops, named the Circle Of Fear
(COF) and Circle Of Pleasure (COP). The COF describes the
facts that: i) pelvic muscle activity before or at the beginning
of penetration may lead to pain; ii) fear induces muscular
tension; and iii) inducing positive erotic stimuli may reduce
fear. The COP instead relies on the Basson’s model and
describes that i) the physiological arousal increases if the
patient is sexually stimulated and subjectively aroused; ii)
the subjective arousal increases with sexually stimulation and
pleasurable physical sensations; and iii) physiological arousal
affects the subjective arousal indirectly via the intermediate
state variable of physical pleasure. The model in [21] is
solely based on known cause-effect relationships from the

medical literature, informed guesses from experts in the field,
and the objective of striking a balance between accuracy
and simplicity to enable mathematical analysis. However, the
model in [21] is neither directly based on specific medical
tests nor measurement data, and is hence not validated from
field experiments.

Contributions: Towards obtaining individualized quan-
titative models of the psychological responses to vaginal
dilation stimuli, we analyze data-driven learning strategies
based on experimental data recorded at Maastricht university
hospital (described in Section II). We thus: i) cast the
learning problem using a Support Vector (SV) framework
that enables implementing dilation-control strategies and
interpretations by medical personnel and patients, analyze the
predictive performance of Support Vector Machine (SVM)
on the available data, and draw some practical conclusions
from these performance; ii) consider that, as often happens,
we face a big constraint on the amount of available data.
We thus consider the additional problem of understanding
if (and how) grouping different patients into clusters and
learning the models from different “clustered” datasets may
help improving the learning process.

After describing the medical data set in Section II, we
summarize the modelling choices in Section III. Sections IV
and V contain the strategies for modelling individual patients
and for extending these models to groups of patients and our
quantitative results. Conclusions are drawn in Section VI.

II. MEDICAL DATA SET

This study is based on medical data recorded at Maastricht
University Hospital and described in more detail in [6]. The
data include participants’ responses to a gradual vaginal
dilation that is forced by the VPI, an inflatable balloon to
be inserted at the introitus as graphically summarized in
Figure 1. Patients undergoing the trial were also watching
sequences of 5-minutes long erotic or non-erotic movies in
the (tentatively) neutral environment.

The study included 36 women without sexual problems,
aged between 18 and 45 years, in a steady heterosexual rela-

Fig. 1. Picture of the VPI (left) and schematic description of its usage
(right). A pump can fill the balloon with water at body temperature; the
length of the inflated area is up to 6 cm. When filled, the balloon gives an
outward omnidirectional pressure to the surrounding tissues.
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Fig. 2. Example of a typical dataset of time-series from one of the patients
in the considered clinical trial. The six movie clips described above are in
this case started at minutes 3, 13, 26, 35, 43 and 52. The VPI was inserted in
the duct during the whole trial but inflated only while watching the movies
(but the second one). The original sampling rate of the system is 10Hz; these
raw signals were then downsampled to 1Hz in our following derivations.

tionship for at least 3 months, and being sexually active in-
cluding coitus. Each individual participated in single sessions
where, while using the VPI and watching movies sequences,
they recorded their perceived level of comfort/pleasure on
a scale from 0 to 100 with an opportune slider. As soon
as the pressure felt unbearable, participants could end the
experiment and force the deflation of the balloon by pressing
an emergency button. Sessions started with the presentation
of a neutral acclimatization movie with pressure induction
using the VPI. This was followed by one high-arousal sexual
movie without inducing vaginal pressure, then followed by
four randomized movies with inducing pressure (one high-
arousal and sexual, one low-arousal and sexual, one high-
arousal and nonsexual, and one neutral movie), see Figure 2.

Since the pressure is measured at the pump, it should
be considered an aggregated indication of the force exerted
by the Pelvic Floor Muscles (PFM). Due to the mechanics
of the system, the pressure data are subject to noise and
measurement inaccuracies. Since the perceived pleasure was
measured by a simple slider during the experiments, they
are also subject to noise. First of all, it is visible in the data
that women sometimes did not change their pleasure levels
for several minutes followed by sometimes rapid changes
or ending the inflation of the balloon. It is hence assumed
that they sometimes simply "forgot" to update their pleasure
levels through the slider. Further, one must keep in mind
that a subjective measure such as the perceived pleasure also
greatly depends on the individual expectation and definition
of pleasurable sensation (aspects that constitute a further
human-induced measurement noise). Statistically modelling
this noise in an accurate way is probably a formidably com-
plex problem, and thus we leave this issue for future work. In
this paper we then do not take these considerations explicitly
into account, and derive our models choosing the simple
model structures indicated in the following Section III.

III. THE MODELLING PROBLEM

Our focus is to obtain data-driven models that can describe
and predict changes in pleasure levels in women as a

response to vaginal dilation stimuli. While dynamical models
such as Hammerstein-Wiener are found to be suitable to
describe physiological models in several applications (see
[18], [22], [23]), as hinted in the previous section our datasets
for modelling the pleasure levels contains recorded pleasure
data that appear to be heavily affected by human-induced
noise. We thus avoid considering dynamics and formulate a
function estimation problem, i.e., assume that there is a static
map between the inputs and the output.

In details, the inputs of the system will be the measurable
physiological quantities (i.e., the volume of the dilator,
denoted with uvolume, the pressure of the pelvic floor muscles,
upressure, and their time derivatives). The output will be the
subjectively assessed (and typically non-measured) pleasant-
ness level of the treatment, ypleasure. Before identifying maps
of the type ypleasure = ψ (uvolume, upressure) there is the need to
discuss the structure of the model. To this purpose, visually
inspecting Figure 2 we notice that there exist:

• positive and negative jumps in the measured pleasure
level ypleasure, i.e., sudden increases or decreases (above a
chosen threshold ȳpleasure) indicating that the subject has
been experiencing something pleasurable or unpleasant that
motivated or reminded her to report this;

• continuations, i.e., periods where users do not change
the perceived pleasure level ypleasure. Note that the available
information does not allow to differentiate between possible
reasons for such “continuations”: e.g., the subjects may
be experiencing changes that are too small to be worth
recording, or simply forget to update their indications;

• stops, i.e., situations where the patients press an emer-
gency stop button to indicate that the experienced pressure
or other sensations were considered unbearable. “Stops” are
in a sense the limit case of “negative jumps”.
Intuitively, high volumes, pressures, and positive derivatives
of these signals should increase the likelihood that the user
will press the stop button or set a negative jump in ypleasure.
Letting u(t− T : t) indicate a signal u in the time window
[t − T, t], this intuition says that if there is a “stop” event
happening at time ta and a “continuation” happening at time
tb, then the norms of upressure(ta − T : ta), u̇pressure(ta − T :
ta), uvolume(ta − T : ta) and u̇volume(ta − T : ta) should be
statistically higher than the norms of upressure(tb − T : tb),
u̇pressure(tb −T : tb), uvolume(tb −T : tb) and u̇volume(tb −T :
tb) for an opportune (and to be determined from the data)
window length T whose physical meaning is a particular type
of human reaction time. As Figure 3 shows, the collected
datasets confirm this intuition, indicating that there are zones
of volume, pressure and their derivatives that are clearly
associated to specific events.

Recall then that the original and foreseen control problem
is to design uvolume, upressure, u̇volume and u̇pressure so that i)
the user does not experience feelings considered unbearable
(i.e., avoid stop events), and ii) to minimize/avoid unpleasant
experiences (i.e., avoid negative jumps events). Thus, the
modelling problem is not to find a model for ypleasure, i.e., a ψ
s.t. ypleasure = ψ (uvolume, upressure), but rather to find a model
that can predict positive and negative jumps, continuations
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Fig. 3. Illustration of the features corresponding to the time-series signals
shown in Figure 2 (due to space limitations we omit plotting the couples
uvolume-u̇volume and u̇pressure-u̇volume). In our experiments we empirically
determined the time window T = 10 seconds and the threshold ȳpleasure =
2 by manually minimizing the Frobenius norm of the cross classification
matrix M defined in the following Section V.

and stops. In other words, we cast the modelling problem as
finding a φ s.t.

y =φ (uvolume, upressure) , with
y ∈{pos. jump, continuation, neg. jump, stop} . (1)

Following the intuition developed above, this problem corre-
sponds to finding partitions of the features space, a problem
that can be cast naturally as a Support Vector Classification
(SVC) problem.

IV. INDIVIDUAL MODELS OF THE PATIENTS REACTIONS

Assume the availability of P individual time-series
datasets of P women (denoted, for simplicity, with the IDs
1, . . . , P ) as, e.g., the one in Figure 2. Given the features
defined in Section III, for each p ∈ {1, . . . , P} it is possible
to transform the associated time-series dataset into a features-
oriented dataset Dp similar to the one represented in Figure 3.
For each p ∈ {1, . . . , P} we can moreover divide Dp

into a training set Dtrain
p and a test set Dtest

p . In our setup,
Dtrain

p corresponds to the periods relative to the third and
fourth movie, and Dtest

p corresponds to the last two movies.
The first two movies are disregarded since they correspond
to an acclimatisation period. Given Dtrain

p we can train an
individual SVC machine φp(·). Each classifier φp(·) can then
be applied on any dataset Dtrain

j , which corresponds to testing
how well the model of patient p can classify the features of
patient j. Testing all possible combinations of p and j leads
to a cross-Classification Error (CE) matrix Mtrain whose
(p, j)-th element is the classification error when using φp
to classify Dtrain

j :

Mtrain :

Dtrain
1 Dtrain

2 · · · Dtrain
P

φ1 CE11 CE12 · · · CE1P

φ2 CE21 CE22 · · · CE2P
...

...
...

. . .
...

φP CEP1 CEP2 · · · CEPP

The problem of determining the structure of φ in (1) becomes
thus the problem of finding the best SVC type, kernel and
hyperparameters, that, for our specific problem, can be cast
in several ways. The extremes are: a) select individual and
potentially different optimal structures φp through individual
Leave-One-Out (LOO) Cross Validation (CV) strategies for
each patient p; b) constrain all φp’s to share the same type
and kernel, and choose them by minimizing the Frobenius
norm of Mtrain (the hyperparameters being again poten-
tially tunable in an individualized manner). Here we choose
strategy b, since it increases the possibilities of introduc-
ing concepts of distances between different machines, e.g.,
by comparing them by the respective support vectors. For
completeness, for our dataset the best SVC structure (among
linear, polynomial up to degree 4 and radial basis kernels)
was empirically determined as linear and based on the four
features upressure, uvolume, u̇pressure, and u̇volume defined over
time windows of 10 seconds. The actual values of the cross-
classification error matrix Mtrain are graphically reported in
Figure 4. Finally, note that up to now the quantities have
been defined using the training sets Dtrain

p . The test sets Dtest
p

will indeed be used in Section V to assess the predictive
performance of the final classifiers.

Fig. 4. Cross-classification error matrix Mtrain relative to the considered
clinical trials, expressed as a greyscale image. Note that the pixels on the
diagonal of this image correspond to classification errors in the training set
for each individual patient. The minimum, average, and maximum cross
classification errors were respectively 0, 0.446, and 1.

V. FROM INDIVIDUAL MODELS TO GROUP MODELS

Inspecting the cross-classification error matrix shown in
Figure 4 we can find couples of patients p and j that have
low cross-classification errors, i.e., such that φp classifies
well Dtrain

j and φj classifies well Dtrain
p . Intuitively, this is

an indication that these patients share similar models, and
that thus they may be in a sense “clustered” together (see
also [24] for other applications of the concepts developed
hereafter).

The natural questions are then:
1) Do patients tend to fall into a finite set of well defined

categories?
2) If so, assuming that patients p and j belong to the same

category, would a “group” classifier φpj trained with
the dataset Dtrain

pj = Dtrain
p ∪Dtrain

j have better predictive
capabilities than the individual machines φp and φj , i.e.,
better performance in classifying the test sets Dtest

p and



Dtest
j ? (Note that this concept can obviously be extended

to groups of an arbitrary number of patients.)

The questions above may be answered through data-driven
methodologies that check if partitioning the set {1, . . . , P}
into K disjoint groups leads to models with greater approx-
imation capabilities, and thus a better usage of the available
datasets. Determining the groups {G1, . . . , GK} can then
naturally be performed through first introducing an opportune
concept of “distance” between the various patients, and then
using classical clustering approaches based on the set of so-
defined distances.

Defining these distances can be made by exploiting the
structure of the classifiers (e.g., the different positions of
the various support vectors across different machines), or
intuitions based on the performance of the classification.
E.g., the more the classification errors on the training sets
CEpj , CEpp, CEjp, and CEjj are similar (i.e., the more the
machines φp and φj can be swapped) the less the two patients
p and j may be considered different (at least from a training
sets perspective). Among the various possibilities, due to
limitations in space we focus only on this last strategy, that
we prefer over the others since it is more prone to intuitive
interpretability for medical personnel.

To define the concept of distance between two patients
from the cross-classification error matrix Mtrain in Sec-
tion IV, we start by verifying from Figure 4 that Mtrain is
not guaranteed to be symmetric. This means that Mtrain does
not define a metric (i.e., a function satisfying non-negativity,
symmetry and the triangle inequality). It is however possible
to transform Mtrain into a dissimilarity matrix whose element
(p, j) is given by

dtrain
ij :=

max (0,CEpj − CEpp) + max (0,CEjp − CEjj)

2
.

(2)
Even if the dtrain

pj ’s in general do not satisfy the triangle
inequality, (2) is a proxy for how much the models of patients
p and j differ (or, more precisely, how much the models
based on their training sets differ). The dtrain

pj constitute indeed
a pseudo-distance, and can be used to run k-medoids [25,
Sec. 14.3.10], an opportune generalization of k-means for
the case of clustering through pseudo-distances.

To use k-medoids, though, there is the need to define
the number of groups K. In compliance with classical
clustering approaches, we thus propose to cast the problem
as a numerically optimization problem where the solution
minimizes within-cluster variances, i.e., to let

{G∗
1, . . . , G

∗
K∗} := arg min

K̃,G̃1,...,G̃K

K̃∑
k=1

 ∑
p,j∈G̃k

dtrain
pj

 (3)

where the superscript ∗ denotes optimality w.r.t. the just
introduced cost function. Because this is a notoriously NP-
hard problem, for which obtaining the optimal solution
becomes rapidly numerically infeasible even for small dataset
sizes, we solve (3) in an approximate way leveraging on
the existing clustering algorithms available in the literature.

More precisely, for every plausible number of groups K, we
propose to:

1) compute, starting from the set of dissimilarity indexes
dtrain
pj ’s, a corresponding clustering of the patients in K

groups {G1, . . . , GK} using a K-medoids clustering
strategy;

2) for each group Gk =
{
p1, . . . , p|Gk|

}
(whose physical

meaning is “persons with similar models”) form the
group-wide training set Dtrain

Gk
= ∪j∈Gk

Dtrain
j , train the

group-wide SVC φGk
, and compute the classification

error CEGkGk
that the classifier φGk

commits in clas-
sifying its own training set;

3) compute the weighted average of the training errors
CEGkGk

’s, where the weights correspond to the car-
dinalities of the various groups Gk’s, and denote this
average with CEK . (Recall that K indicates in how
many clusters the original set of patients was divided
and the clusters are indexed by k.)

Choosing that number of groups K∗ that minimizes the
average training errors CEK means thus choosing that K∗

(and that composition of the groups G∗
k) that maximizes

the statistical performance of the classifiers from a training
perspectives. The question is whether K∗ and the corre-
sponding groups compositions G∗

k lead to good prediction
performance, i.e., if they perform better on the test datasets
Dtest

p than the individually trained machines. The answer to
the question is plotted in Figure 5, where we compare the
weighted average errors both in training and in test.
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Fig. 5. Weighted average classification errors for the learned classifiers in
the training sets and in the test sets as a function of the number of patients
groups K.

Our strategy indicates that, for the available datasets, the
best number of groups is 7, corresponding to an average
classification error in the training sets of 22.9%, and in the
test sets of 26.9%. Inspecting the graph, some conclusions
follow: From a test sets perspective, the best would seem to
be 3 groups, for a classification error of 26.2%. These num-
bers, though, slightly depend (even if not very heavily) on the
hyperparameters of the estimation scheme (e.g., the length
of the time window T chosen for computing the features, cf.
Figure 3). Nonetheless, varying these hyperparameters does
not change the trends for which the curves have minima
around 5 to 10 groups (training case) and 3 to 5 groups
(test case). The chosen K∗ tends thus to overestimate the
one that is optimal according to the performance in the test
sets. Yet, that K∗ leads also to considerable improvements of
the performance against learning each patients individually (a



strategy that would lead, as shown in Figure 5, to an average
classification error of 38.3% in the test sets).

Summarizing, even if we have been using a rather small
dataset whose statistical significance is insufficient to make
claims valid for the whole human population, the evidence
seems to indicate that grouping patients together and per-
forming joint learning is, in this particular medical frame-
work, beneficial from statistical perspectives.

VI. CONCLUSIONS

Towards the technological goal of developing vaginal
dilators that can autonomously adapt to patients and max-
imize the medical exercising while respecting the comfort
levels, we studied how to derive quantitative models for
effectively forecasting changes in pain/pleasure levels in
patients subject to measurable vaginal dilation inputs. Specif-
ically, we focused on the very important concept of how
to automatically determine individualization levels of the
aforementioned models: Since it is known that persons tend
to respond differently, one should learn individual models.
At the same time, differences among specific persons may
sometimes be very small. Hence, it may be beneficial to learn
from several individuals simultaneously.

We thus investigated how to structure such type of models
as opportune support vector classifiers, and how to group
patients starting from physiological measurements and sub-
jective indications of pleasure / pain together. We then
applied our strategies to data from 36 patients collected
through ad-hoc medical tests, and obtained numerical results
that seem to indicate that grouping patients is, in our specific
medical context, actually improving the overall statistical
performance of the models. Average classification errors on
test sets passed indeed from 38.3% in the “non-grouped-
patients” case to a 26.9% in the “grouped-patients” one.

Despite obtaining results that are in accordance with what
intuition would suggest, we encountered technical and theo-
retical problems that deserve dedicated future investigations.
For example, we have completely neglected discussing the
case where a new patient is added to the dataset, and thus
how to assign her to a group and potentially adapt the
composition of the groups in a recursive (and non-naïve)
way. Moreover, the used measurements are subjective, and
thus contain psychological factors (e.g., forgetting about
updating) that are non-observable in the settings considered
in this paper. Modelling these factors corresponds in other
words to modelling psychological systems, a subject that is
poised to be very challenging and probably requiring the
development of new ad-hoc mathematical tools for data-
driven learning of psychological responses. We nonetheless
consider these important topics and aim at investigating them
in deep in our future works.
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