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Abstract— The distributed estimation of the number of active
sensors in a network can be important for estimation and
organization purposes. We propose a design methodology based
on the following paradigm: some locally randomly generated
values are exchanged among the various sensors and thus mod-
ified by known consensus-based strategies. Statistical analysis
of the a-consensus values allows estimation of the number of
participant sensors. The main features of this approach are:
algorithms are completely distributed, since they do not require
leader election steps; sensors are not requested to transmit
authenticative information (for example identificative numbers
or similar data), and thus the strategy can be implemented
whenever privacy problems arise. After a rigorous formulation
of the paradigma we analyze some practical examples, fully
characterize them from a statistical point of view, and finally
we provide some general theoretical results and asymptotic
analyses.

Index Terms— sensor networks, distributed estimation, num-
ber of sensors, consensus algorithms

I. INTRODUCTION

During the last years distributed systems have been attracting
more and more interests due to their intrinsic relevance in
some real-world applications, as energy management and
ambient monitoring [1] [2]. There has consequently been
a wide interest on how to perform distributed computations
in order to take the maximal possible advantage from the
peculiarities of such systems [3] [4].

Recently many research groups focused on a certain kind
of fully distributed computation techniques (i.e. that not
require hierarchized network structures) known as consensus
algorithms [5]. Their importance is given by the fact that they
require low computational and communication resources,
they are robust to link and nodes failures, and generally they
do not require clock synchronization. Despite their simple
structure, they have been proven to be able to compute
a wide class of functions [6], estimate important physical
parameters [7], or even to be used for synchronization
purposes [8].

Yet sometimes it could be useful to know (or have an
estimate of) the number of active agents / sensors composing
the network, for example in parameter estimation [9] or in
non-parametric regression [10]. In a distributed computation
framework it is mandatory to estimate this number without
using centralized paradigms, and at the best of our knowledge
this has been partially addressed in literature.

This work was supported by the Italian CaRiPaRo Foundation under the
Wise-Wai funded project and by European Community’s Seventh Frame-
work Programme under agreement n. FP7-ICT-223866 - FeedNetBack.

Damiano Varagnolo, Gianluigi Pillonetto and Luca Schenato are with
the Department of Information Engineering, University of Padova, Via
Gradenigo, 6/b, Padova, Italy. E-mails: { varagnolo | giapi |
schenato }@dei.unipd.it

A common way of performing this task is to use a mobile
access point moving through the network. In this context,
authors of [11] analyze an algorithm based on the Good-
Turing estimator of the missing mass [12] given vectors of
observed sensors IDs, while in [13] other authors propose
a probabilistic sequential polling protocol associated to a
sensor identification mechanism, and show that the number
of transmissions per sensor required to obtain an arbitrar-
ily desired level of estimation accuracy is logarithmically
bounded. In [14] authors consider underwater communi-
cations networks, and provide a probabilistic estimation
procedure for counting the number of neighbours of the
various nodes with a certain accuracy, but the algorithm
works only locally and does not provide an estimation of
the number of the active sensors in the whole network. An
other interesting field that has been studied is the resource
inventory application. Usually in this scenario the structure
of the counting algorithm is hyerarchical: a certain hand-
portable sensor is moved through the environment, polling
for certain kinds of objects and then returning the information
to a centralized server [15]. There have been proposed also
estimators based on the physical properties of the medium
within information is transmitted (as in [16]).

Here we propose a fully distributed procedure with novel
properties with respect to the previously cited papers. The
first is the independence on the transmission medium once it
is assumed that, once correctly transmitted, the information
is also correctly received. The procedure can also be con-
tinuously running, allowing the developement of topology
changes algorithms (using well known change detection
procedures [17]). Furthermore sensors are in general not
required to authenticate, allowing to be insensible to privacy
problematics. Finally, the procedure is asymptotically insen-
sitive to packet loss effects, as soon as they do not affect the
results of the consensus algorithms.

The paper is structured as follows: in Sec. II we formally
state the analyzed problem, give two examples where ana-
lytical solutions are known, and discuss their structure and
properties. In Secc. III and IV we then generalize (when
possible) the results obtained for the given examples, while
in Sec. V we obtain solutions to other examples using the
same concepts developed before. Finally we draw some
conclusions and propose future extensions in Sec. VI.

II. DISTRIBUTED NUMBER OF SENSORS ESTIMATION

A. Problem formulation

Formally, we model a network with a graph G = {N , E},
where the set of nodes N = {1, . . . , S} is the set of
the sensors composing the network, while the set of edges



E ⊆ N ×N is the set of the communication links between
the sensors. We assume that the graph G is undirected, i.e.
(i, j) ∈ E implies that also (j, i) ∈ E , and not time-varying.

Our objective is to devise a distributed strategy so that
each sensor is able to estimate the total number of sensors in
the network S only through local communications and with
limited coordination among sensors. We propose a simple
strategy based on three-steps: first sensors locally generate a
set of random data, then they distributely compute a function
based on the locally generated data, and finally they locally
estimate S based on the value of the distributely computed
function. More formally, these three steps are formalized as
follows:

1) each sensor i = 1, . . . , S locally generates a vector
of M ∈ N+ i.i.d. random values yi,m ∈ R, m =
1, . . . ,M , using a probability density p (·) that is the
same among all sensors in the network; does not
depend on the actual number of sensors S, does not
depend on the number of generated values M ;

2) sensor distributely compute the vector f ∈ RM through
the function F : RS → R as follows:

f := [f1, . . . , fM ] fm := F (y1,m, . . . , yS,m) .
(1)

The function F must involve only computationally
simple operations and local communications among
the sensors. Some examples of such computable
functions are: the arithmetic mean, the maximum,
the minimum and the variance (of the set of data
y1,m, . . . , yS,m);

3) each sensor locally computes an estimate Ŝ−1 of S−1

based on the vector f ∈ RM , through a function Ψ :
RM → R+:

Ŝ−1 = Ψ (f1, . . . , fM ) . (2)

The reason for estimating S−1 rather than S in the third step
of the algorithm is motivated by the fact that under general
conditions, the performance results will be more natural, as
will be shown below. Nonetheless, we will give performance
results also for estimators of S rather than S−1. This three-
step strategy is illustrated in Fig. 1.

Hypothesizing a lack of knowledge of a prior on S, a
natural measure of performance is given by the conditioned
Mean Square Error (MSE), namely:

J (p, F,Ψ) := E
[(
S−1 − Ŝ−1

)2
]

(3)

where we explicitly indicated that this performance is a
function of the generating p.d.f. p (·), the consensus function
F and the estimator Ψ. Ideally we would like to minimize
such error over all the possible choices of the triple (p, F,Ψ).
Obviously this is a formidable infinite dimensional problem,
given the hypotheses previously posed in points 1), 2) and
3). In this work we focus on special classes of the triple
(p, F,Ψ) and study the behavior of index (3) in this subset
of possible choices, to get some insights on the optimization
problem for the general case. We start by looking at two
simple examples of such triples.
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Fig. 1: Graphical representation of the estimation strategy
for the inverse of the number of sensors S−1.

B. Motivating example 1: Gaussian + average + Maximum
Likelihood

Consider a zero-mean normal distribution for the generation
of the data yi,m, i.e. p (yi,m) = N (0, 1); the average for the
consensus function [18] [19], i.e.:

F (y1,m, . . . , yS,m) :=
1
S

S∑
i=1

yi,m =: fm ; (4)

the Maximum Likelihood (ML) estimate for S−1 as the
estimation function Ŝ−1 = Ψ (f1, . . . , fM ), i.e.:

Ψ (f1, . . . , fM ) := arg max
S−1

p
(
f1, . . . , fM

∣∣S−1
)
. (5)

Clearly fm ∼ N
(
0, S−1

) ∀m since all the yi,m are i.i.d.
This imply that also all the fm are i.i.d., therefore:

p
(
f1, . . . , fM

∣∣S−1
)

=
1√

2π (S−1)M
exp

(
−
∑M

m=1 f
2
M

2S−1

)
(6)

and thus, after some simple computations:

Ψ := arg max
S−1

p
(
f1, . . . , fM

∣∣S−1
)

=
1
M

M∑
m=1

f2
M . (7)

Considering Ŝ−1 = Ψ (f1, . . . , fM ), since
√
SfM ∼

N (0, 1), we have that
∑M

m=1

(√
Sfm

)2

∼ χ2 (M), that
can be finally traduced in:

M

S−1
Ŝ−1 ∼ χ2 (M) (8)

This provides the analytic expression for the density
p
(
Ŝ−1 |S

)
, from which we obtain the mean and variance

as:
E
[
Ŝ−1

]
= S−1, var

(
Ŝ−1

)
= S−2 2

M
. (9)

Hence, the estimator (7) is unbiased and its performance
index (3) coincides with its variance, namely:

J (p, F,Ψ) = E
[(
S−1 − Ŝ−1

)2
]

= S−2 2
M

. (10)



It is also important to remark that the previous expression
implies that the relative estimation error S−1−dS−1

S−1 is inde-
pendent of S.

For this example it is also possible to easily compute the
performance of the ML estimator of S rather that S−1. In
fact, one has:

Ŝ := arg max
S

p (f1, . . . , fM |S ) =
M∑M

m=1 f
2
m

=
1

Ŝ−1

(11)
therefore:

1
SM

Ŝ ∼ Inv-χ2 (M) (12)

and thus:

p
(
Ŝ |S

)
= Γ

(
M

2

)−1 1

Ŝ

(
M

2
S

Ŝ

)M
2

exp
(
−M

2
S

Ŝ

)
(13)

where Γ (·) is the Gamma function. From this it follows that:

E
[
S − Ŝ

]
=

S

M − 2
, (14)

var
(
Ŝ
)

=
2S2

M

M3

(M − 2)2(M − 4)
(15)

and therefore the mean square error for Ŝ is:

E
[(
S − Ŝ

)2
]

= S2 2M3 +M (M − 4)
M (M − 2)2 (M − 4)

. (16)

Notice now that asymptotically:

lim
M→+∞

E
[(
S − Ŝ

)2
]

= S2 2
M

(17)

thus the relative estimation error of the estimator Ŝ and Ŝ−1

are the same.

C. Motivating example 2: Uniform + maximum + Maximum
Likelihood

We start this example recalling two basic results relating
order statistics [20]. Assume S to be the number of elements
of the sample y1,m, . . . , yS,m, and f (k)

m to be its statistic of
order k. Let every yi,m be i.i.d. and let p (a) be its prob-
ability density evaluated in a, and P (a) be its probability
distribution evaluated in a. Then:

p
f
(k)
m

(a)=
S! P (a)(k−1)(1− P (a))(S−k)

p (a)
(k − 1)! (S − k)!

(18)

while the joint density p
f
(k)
m f

(j)
m

(a1a2) is given by:

p
f
(k)
m f

(j)
m

(a1a2)=
S!

(k − 1)! (j − k − 1)! (S − j)!
· (P (a2)− P (a1))(j−k−1)

· (1− P (a2))(S−j)
P (a1)(k−1)

·p (a1) p (a2) .

(19)

Consider now a uniform distribution for the generation of
the data yi,m, i.e. p (yi,m) = U [0, 1] and use the maximum
to define the consensus function, i.e.:

F (y1,m, . . . , yS,m) := max
i
{yi,m} =: fm . (20)

Again the ML estimator for S−1 is used to define Ψ (see
Equ. (5)). The probability density of the S-th order statistic
fm is known and in general given by Equ. (18). In this case:

p (fm |S ) = SfS−1
m ∀m . (21)

Therefore:

p (f1, . . . fM |S ) =
M∏

m=1

p (fm |S ) = SM
M∏

m=1

fS−1
m ∀m .

(22)
Again, after some simple computations:

Ψ := arg max
S−1

p
(
f1, . . . , fM

∣∣S−1
)

= − 1
M

M∑
m=1

log (fM ) .

(23)
Now, defining z := − log (fm), it is immediate to check that
z is an exponential random variable with rate S, i.e.:

p (z |S ) =
{
Sexp (−Sz) if z ≥ 0
0 otherwise. (24)

The sum of M i.i.d. exponential random variables with rate
S is a Gamma random variable with shape M and scale 1

S .
Considering then that Ŝ−1 = Ψ (f1, . . . , fM ) is thus a scaled
version of this sum of exponentials, it follows that:

M

S−1
Ŝ−1 ∼ Gamma (M, 1) (25)

from which it is immediate to compute mean and variance:

E
[
Ŝ−1

]
= S−1, var

(
Ŝ−1

)
= S−2 1

M
. (26)

This implies that the estimator Ŝ−1 is unbiased and that its
performance index (3) coincides with its variance, namely:

J (p, F,Ψ) = E
[(
S−1 − Ŝ−1

)2
]

= S−2 1
M

. (27)

By considerations similar to those of Sec. II-B, one obtains
that Ŝ is asymptotically unbiased, with asymptotic variance
equal to that of Ŝ−1.

Comparing Equu. (10) and (27), it is remarkable to notice
that, given a fixed M , the performance of the estimator
based on the current strategy is exactly twice as large as
that obtainable adopting the previous strategy.

D. Discussion on the motivating examples

A number of points regarding the previous two examples
are now in order. First, notice that the function Ŝ−1 =
Ψ (f1, . . . , fM ) can be decomposed into simpler blocks, as
shown in Fig. 2. First, all the quantities fm are passed
through the same nonlinear function ψ : R → R which
transform each fm into an unbiased estimate of S−1, i.e.:

Ŝ−1
m = ψ (fm) m = 1, . . . ,M . (28)

Now, due to the independence of the various fm, also
the Ŝ−1

m are uncorrelated. This implies that, in order to
obtain the global estimate using all the available information,



the various Ŝ−1
m have simply to be combined through an

arithmetic mean:

Ŝ−1 =
1
M

M∑
m=1

Ŝ−1
m . (29)

In fact, in Sec. II-B we had ψ (·) = (·)2, while in Sec. II-C
we had ψ (·) = −log (·).
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Fig. 2: Alternative graphical representation of the estimation
strategies for the inverse of the number of sensors S−1

proposed in the motivating examples.

The second point is that being each Ŝ−1
m an unbiased

estimate, the variance of the combined estimate Ŝ−1 will
decrease as 1

M , and the quality of this variance will depend

on the variance of the single estimates Ŝ−1
m . By comparing

the indexes (3) of the two previous examples we have also
seen that the strategy of Sec. II-C gives better performance
than the one of Sec. II-B (the variance is twice as small for
a fixed M ). This is particularly positive since the networked
distributed computation of the maximum of a set of values is
much faster than the computation of its average. In fact the
maximum can be computed by the following simple strategy:
each node i initializes its estimate of the maximum to its own
value zi,m (0) = yi,m (0 indicates a time index) and then
broadcasts to its neighbors this value. When a node i receives
a message from a neighbor j, i sets its own estimate to the
maximum of local and the received values, i.e. zi,m (t+ 1) =
max {zi,m (t) , zj,m (t)}, and broadcasts again the value. It is
easy to see that after a finite number of steps T , namely the
largest minimum path distance between any couple of nodes,
each node will have correctly computed the maximum,
i.e. zi,m (t) = max {y1,m, . . . , yS,m, } ∀t ≥ T, ∀m.
Differently, the average can still be computed in a distributed
fashion through average consensus algorithms, but its rate
of convergence to the actual average is exponential and
depends on the size of the network. For example, in a circular
network where each node has only two neighbors (left and
right), the number of steps necessary to correctly compute the
maximum is Tmax = S/2, while the number of steps required

to achieve a 1%-error in the estimation of the average is:

Tave =
log (0.01)

log (1− 2π2/S2)
� Tmax . (30)

In the next sections we will show that the scheme shown
in Fig. 2 is more general than the two toy examples we just
presented. In particular we will concentrate on two special
functions F , namely the average and the maximum, and we
will study when the ML estimate is optimal in the sense of
minimization of the performance index (3) for a large class
of p.d.f. p (·). Also we would like to understand if there
exist p.d.f. p (·)’s that provide smaller estimation error, and
if there are classes of equivalence in terms of achievable
performance.

III. SPECIAL CASE: F = AVERAGE

Let:

Fave := F (y1,m, . . . , yS,m) =
1
S

S∑
i=1

yi,m =: fm . (31)

Now, let us assume that data are generated by a generic
gaussian r.v., i.e. yi,m ∼ p (yi,m) = N (µ, σ2

)
. It is easy

to show, following the same steps of Sec. II-B, that the ML
estimator for S−1 in this case is given by:

Ŝ−1 := ΨML (f1, . . . , fM ) =
1
M

M∑
m=1

(fm − µ)2

σ2
(32)

Ŝ−1 ∼ S−1

M
χ2 (M) . (33)

From this observation it is possible to derive the following
proposition:

Proposition 1. Let N be the class of all gaussian random
variables with positive variance, i.e. p ∈ N if p = N (µ, σ2

)
for some µ and σ2 > 0. Then ΨML is the Minimum-
Variance Unbiased Estimator (MVUE) for S−1 within this
class. Moreover we have:

min
p (·) ∈ N

Ψ s.t. E [Ψ]=S−1

J (p, Fave,Ψ)=J (N (0, 1), Fave,ΨML)=
2
M

.

(34)

Given the definition of Equ. (3) and a generic density p (·),
it is not obvious whether the ML strategy is minimizing J .
Even if we restrict Ψ to be the ML estimator (again for
a given p (·)), it is not easy to find an analytic expression
for Ŝ−1 nor its distribution. One little step forward we can
make is to notice that translation and scaling of a certain
random variable do not affect the performance of the optimal
estimator, as formally stated in Prop. 2. This allows us
to restrict to distributions p (·) with zero mean and unit
variance.



Proposition 2. Let px (a) be a generic probability density
with mean µ and variance σ2 > 0, and consider the zero-
mean unit-variance random variable:

y =
x− µ
σ

, x ∼ px (35)

with corresponding density py (a) = σpx (σa+ µ). Then:

min
Ψ

J (px, Fave,Ψ) = min
Ψ

J (py, Fave,Ψ) . (36)

When we choose the average Fave as the network function,
it is not evident how to optimally choose the density p (·)
and the estimator function Ψ to minimize the index J . In
case of large networks, with large S, we can still exploit the
central limit theorem: if yi,m s.t. yi,m ∼ p (·) and E [yi,m] =
0, var (yi,m) = 1, then fm = Fave (y1,m, . . . , yS,m) has in
general the following probability distribution:

pfm
(a) = (p ∗ · · · ∗ p)︸ ︷︷ ︸

S times

(a) (37)

where the symbol ∗ indicates the convolution operator. But
from the central limit theorem it follows that:

lim
S→+∞

pfm
(·) = N (0, S−1

)
, in distribution. (38)

As a consequence, it is likely that for large S there is no ad-
vantage of using probability distributions p (·) and estimator
functions Ψ different from the unit normal distribution and
the ML, respectively, i.e.:

lim
S→+∞

min
p,Ψ

J (p, Fave,Ψ) = J (N (0, 1) , Fave,ΨML) (39)

although this claim should be rigorously proven. Even if the
previous claim holds, it is still interesting to ask whether
for finite S there are distributions p (·) that can provide
better estimation performance than the Gaussian does. For
example, it would be interesting to evaluate the performance,
at least numerically, of highly asymmetrical distributions
like the exponentials or discrete distributions like the binary
distribution. We are currently exploring these directions.

IV. SPECIAL CASE: F = MAXIMUM

Let:

Fmax := F (y1,m, . . . , yS,m) = max
i
{yi,m} =: fm . (40)

We can notice immediately that, if yi,m has probability
density p (a) and distribution P (a), then Equ. (18) leads
to a joint density on the random vector f1, . . . , fM of the
form:

pf1,...,fM
(a1, . . . , aM )=SM

M∏
m=1

P (am)S−1
p (am) .

(41)
Maximixation of the previous likelihood leads to the generic
ML estimator for S−1:

Ŝ−1 = ΨML (f1, . . . , fM ) := − 1
M

M∑
m=1

log (P (fm)) .

(42)

It is immediate to show that the relative ML estimator Ŝ of
S is given by Ŝ = 1/ΨML = 1/Ŝ−1. Define P as the class
of densities p (·) whose relative distribution P (·) is strictly
monotonic and continuous. Then the estimators Ŝ−1 and Ŝ
are characterized by the following propositions:

Proposition 3. For any P (a) ∈ P , ΨML is the MVUE of
S−1.

This means that if we restrict Ψ to be unbiased, then
Ŝ−1 = ΨML is optimal with respect to index (3). In
addition, the performance of the estimator is independent
of the adopted density. This is made precise in the following
proposition.

Proposition 4. It holds that:

min
p (·) ∈ P

Ψs.t. E [Ψ] = S−1

J (p, Fmax,Ψ) = J (U [0, 1] , Fmax,ΨML) .

(43)

V. DISCUSSION FOR DIFFERENT F : MINIMUM AND
RANGE

A. Uniform generation with min. consensus
For simmetry reasons, the usage of min. consensus strategies
lead to the same performance results achievable with max.
consensus ones. In this case the general expression for ML
estimators of S−1 is:

Ψ (f1, . . . , fM ) = − 1
M

M∑
m=1

log (1− P (fm)) . (44)

B. Uniform generation with range consensus
Running max. and min. consensus in parallel it is possible to
find simultaneously the statistics of order 1 and S of {fm}:

fm := max
i
{yi,m} fm := min

i
{yi,m} . (45)

If yi,m has probability density p (a) and distribution P (a),
then Equ. (19) leads to a joint density on fm, fm of the form:

pfmfm
(a1 a2) =

(
S2 − S) (P (a1)− P (a2))S−2 ·
· p (a1) p (a2)

(46)

whenever a1 ≥ a2, while pfmfm
(a1 a2) = 0 otherwise. The

joint density on f1, . . . , fM can be immediately computed
and minimized in S, in order to obtain a general ML
estimator of the form:

Ŝ =
1
2
− L−1 +

√
1
4

+ L−2 (47)

where:

L :=
1
M

M∑
m=1

log
(
P
(
fm

)− P (fm

))
. (48)

Considering again yi,m ∼ U [0, 1], the joint density is thus:

p
(
f1, . . . , fM |S

)
= SM (S − 1)M

M∏
m=1

(
fm − fm

)S−2

(49)



and Equ. (48) must be refined in:

L :=
1
M

M∑
m=1

log
(
fm − fm

)
. (50)

Notice that the random variable rm := fm − fm has
probability density function:

p (rm |S ) =
∂

∂rm

(
1−
∫ 1

rm

∫ fm−rm

0

p
(
fm, fm |S

)
dfmdfm

)
= S (S − 1)

(
rS−2
m − rS−1

m

)
(51)

which transformation log (rm) is anymore a r.v. which prob-
ability density is analytically known. For this reason we are
not able to find the density of L (and thus of Ŝ|S) in a closed
form. In this case p

(
Ŝ |S

)
shall be estimated with Monte

Carlo simulations, as we made in Fig. 3. Rather surprisingly,
simulations show that, with the same amount of information
exchanged among the sensors and with yi,m ∼ U [0, 1], the
range consensus approach performs slightly better than the
max. consensus one (notice that for a given M the range-
consensus scheme actually computes 2M sensible data).

10 15 20 25 30 35 40
0

0.05

0.1

Ŝ

p
( Ŝ

|S
)

 

 

M = 10  (range cons.)
M = 20  (max. cons.)

Fig. 3: Comparisons between the empirical p
(
Ŝ |S

)
relative

to max. consensus and range consensus (2 · 106 number of
samples, S = 20).

VI. CONCLUSIONS

We presented how to design consensus-based distributed
algorithms for the probabilistic estimation of the number of
active sensors that do not require leader election steps, are
suitable for on-line estimations and that do not require sensor
authentication features. These algorithms are based on the
fact that when consensus algorithms are applied to randomly
generated data, the probability distributions of the consensus
results are in general parametrized by the actual number of
participants in the consensus procedure. We shown that for
max. consensus algorithms, ML estimators have a general
fixed structure and their performances are the same for a
large class of data generation schemes. Moreover we shown
that this structure is asymptotically optimal also whenever
average consensus are used.

A first branch of the future works is to analyze issues on
the design also in non-asymptotic frameworks, specially for
small networks, and to analyze the effects of quantizations
on the results. Another branch is to use these procedures
to develop network topology change algorithms, focusing on

the analysis of the tradeoffs between velocity of convergence
and accuracy of the estimators.

APPENDIX

Proof of Propp. 1, 3 and 4. We start considering Prop. 3.
T (f1, . . . , fM ) := −∑M

m=1 log (P (fm)) and the relative
little abuse of notation:

Ŝ−1 (T ) := Ŝ−1 (T (f1, . . . , fM )) := Ŝ−1 (f1, . . . , fM ) .
(52)

Since pf1,...,fM
(a1, . . . , aM |S) can be rewritten as:(

M∏
m=1

p (am)

)(
SMexp (− (S − 1)T (a1, . . . , aM ))

)
(53)

for the Fisher-Neyman factorization theorem T (f1, . . . , fM )
is a sufficient statistic for S. From the Lehmann-Scheffé
theorem, we know that if T is also complete and E

[
Ŝ−1

]
=

S−1, then Ŝ−1 it is MVUE for S−1. Defining zm := P (fm),
we have that zm ∼ U [0, 1], thus, for the same reasonings
made in Equ. (24), we have that − log (P (fm)) is an
exponential random variable. This implies that:

MŜ−1 = −
M∑

m=1

log (P (fm)) ∼ Gamma
(
M,

1
S

)
(54)

and thus condition E
[
Ŝ−1

]
= S−1 is satisfied. The com-

pleteness of T (f1, . . . , fM ) can be proved showing that if
g (T ) is a generic measurable function s.t. E [g (T )|S] = 0
independently of S, then it must be g (·) ≡ 0 almost
everywhere (a.e.). Considering that T is Gamma

(
M, 1

S

)
, the

previous condition on the expectation can be rewritten as:

Γ (M)−1
SM

∫ +∞

0

g (T )TM−1exp (−TS) dT ≡ 0 . (55)

This is equivalent to say that the Laplace transform of
g (T )TM−1 has to be zero a.e., and this happens if and
only if g (T ) is zero a.e. This proves the completeness of T
and thus the proposition.

For what concerns the proof of Prop. 4, it is a consequence
of (55) that shows that the distribution of the estimator is
independent of the density p which is adopted. Finally, the
proof of Prop. 1 is omitted since can be obtained with reason-
ings similar to those followed above (e.g., completeness can
be proved just repeating the same argument relative to (55)
except that the chi-square in place of the Gamma distribution
has to be considered).

Proof of Prop. 2. Assume ax
1 , . . . , a

x
S i.i.d. and extracted

from px. Define:

ay
i :=

ax
i − µ
σ

fx :=
1
S

S∑
i=1

ax
i fy :=

1
S

S∑
i=1

ay
i .

(56)
From px (ax

i ) = py (ay
i ), and using the invariance of the

average function Fave with respect to translation and scaling
(it is a linear function), it follows immediately that:

pfx
(Fave (ax

1 , . . . , a
x
S , )|S) = pfy

(Fave (ay
1, . . . , a

y
S , )|S) .

(57)



This means that the conditioned statistics from which the
optimal Ψ is designed are exactly the same in both cases x
and y, and this implies Equ. (36).
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