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Abstract

In this paper we focus on collaborative multi-agent systems, where agents are distributed over a region of interest and
collaborate to achieve a common estimation goal. In particular, we introduce two consensus-based distributed linear estimators.
The first one is designed for a Bayesian scenario, where an unknown common finite-dimensional parameter vector has to be
reconstructed, while the second one regards the nonparametric reconstruction of an unknown function sampled at different
locations by the sensors. Both of the algorithms are characterized in terms of the trade-off between estimation performance,
communication, computation and memory complexity. In the finite-dimensional setting, we derive mild sufficient conditions
which ensure that distributed estimator performs better than the local optimal ones in terms of estimation error variance. In
the nonparametric setting, we introduce an on-line algorithm that allows the agents to simultaneously compute the function
estimate with small computational, communication and data storage efforts, as well as to quantify its distance from the
centralized estimate given by a Regularization Network, one of the most powerful regularized kernel methods. These results
are obtained by deriving bounds on the estimation error that provide insights on how the uncertainty inherent in a sensor
network, such as imperfect knowledge on the number of agents and the measurement models used by the sensors, can degrade
the performance of the estimation process. Numerical experiments are included to support the theoretical findings.

Key words: distributed learning, regularization, Gaussian processes, parametric estimation, nonparametric estimation,
wireless sensor networks, reproducing kernel Hilbert spaces, consensus

1 Introduction

New low-cost technologies and wireless communication
are promoting the deployment of networks with a large
number of sensors (often called also nodes, or agents)
which can communicate and collaborate to achieve a
common objective. These networks, whose popularity
and diffusion is increasing, can be employed for a wide
range of applications such as remote surveillance of haz-
ardous areas, environmental monitoring, and indoor tar-
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get tracking [1,2]. Although these networks promise in-
credible advantages as compared to more traditional
technologies, they also pose challenging novel questions
from both theoretical and practical perspectives in terms
of information compression [3], distributed learning [4],
and event detection [5,6], just to name a few.

1.1 Literature review

Over the multitude of different multi-agent systems, we
focus on collaborative ad-hoc wireless sensor networks,
i.e., networks in which sensors are randomly distributed
over a region of interest and collaborate to achieve a com-
mon goal [7].We assume that agents have limited compu-
tational and communication capabilities, that there are
no central coordinating units or fusion centers, and that
each sensor aims at obtaining a shared knowledge close
to the one computable through a centralized strategy.
Finally we assume that the topology can be dynamic,
allowing agents to randomly appear, disappear or move.
For this reason we will let the nodes have only a lim-
ited topological knowledge. In particular we assume that

Preprint submitted to Automatica June 5, 2012



they only know the probability density of their physical
location. Examples of such networks are wireless sensor
networks for forest-monitoring where identical sensors
are dropped from an helicopter, or networks of mobile
robots exploring an unknown but limited region.

In this paper we focus on the problem of distributed
regression [8,9] subject to communication and computa-
tional constraints for parametric [10] and nonparamet-
ric [11] models. In the context of parametric estimation,
several distributed strategies have been proposed. For
example, in [12] the authors focus on consensus-based
decentralized estimation of deterministic parameter
vectors, considering both Maximum Likelihood (ML)
and Best Linear Unbiased Estimation (BLUE) schemes,
solved through a set of convex minimization subprob-
lems. Distributed convex optimization has also been
used in [13] to distributedly compute the Linear Mini-
mum Mean Square-Error (LMMSE) estimate of an un-
known signal through the parallelization of coordinate
descent steps. Similar techniques have been used in [14],
where authors consider three different consensus-based
distributed Lasso regression algorithms: the first based
on quadratic programming techniques, the second on
cyclic coordinate descent steps, and the third on the
decomposition of the original cost function into smaller
optimization subproblems. Other authors proposed dis-
tributed inference schemes based on graphical models,
like in [15] or in [16], offering an LMMSE estimator that
exploits a particular implementation of the Gauss-Seidel
matrix inversion algorithm.

Parametric descriptions of processes naturally arise in
scenarios where it is possible to formulate a specific
class of finite-dimensional models such as polynomials
or radial basis functions. However, there are problems
for which this is difficult and nonparametric estima-
tion has been found to be more suitable and effective.
In particular, the nonparametric approaches have been
proved to be consistent with respect of a large number of
models classes, such as the NARX models [17]. Within
this framework, the theory of reproducing kernel Hilbert
spaces (RKHSs) [18] has been often used for regression
purposes [19,20]. This theory has been successfully used
also in distributed scenarios: for example, [21] consid-
ers the problem of jointly estimating time delays and
functions, while [22] proposes a distributed regularized
kernel Least Squares (LS) regression problem based on
successive orthogonal projections. Similarly, in [23] the
authors extend [22] by proposing modifications reducing
the communication burden and synchronization assump-
tions. In [24], a reduced order model approach is pro-
posed, where sensors construct an estimate considering
only a subset of the representing functions that would be
used to form the optimal solution. Other approaches in-
volve message-passing based schemes in graphical mod-
els: in [25] the authors consider a nonparametric dis-
tributed regression algorithm that is subject to commu-
nication constraints, while [26] considers kernel linear

regressors without regularizing terms.

Although the current trend is towards the design of
purely distributed algorithms where each agent runs the
same algorithm, also hierarchical strategies have been
proposed. For example, [27] offers a distributed Bayesian
learning schemewhere a supervisor node fuses the results
of local outputs, [28] proposes an iterative conditional
expectation algorithm that distributedly estimates a de-
terministic function, while [29] uses a pre-defined cyclic
learning schemes based on information routing tables.

An other interesting research field is given bymobile sen-
sor networks, where agents exploit their motion capabili-
ties to perform particular tasks. Examples are [30], where
the author introduces the so-called Distributed Kriged
Kalman Filter, an algorithm used to estimate the distri-
bution of a dynamic Gaussian random field and its gra-
dient. We notice that in [30] sensors estimate their own
neighborhood and not to the global scenario. In the same
framework, in [31] authors develop a distributed learn-
ing and cooperative control algorithm where sensors es-
timate a static field. The field is modeled as a network
of radial basis functions whose number and centers lo-
cation are known in advance by sensors. Nonparametric
schemes are applied also in [32], where the mobile sensor
network distributedly estimates a noisily sampled scalar
random field through opportune Nearest-Neighbors in-
terpolation schemes, and in [33], where the authors use
subsets of measurements to perform Gaussian processes
based regression and robots coordination.

1.2 Contribution

In this work, we consider a situation where each sensor
collaborates to estimate a global unknown parameter
vector or function, so that at the end of the process each
node will have the same copy of the estimate.We propose
several distributed estimation algorithms, for both the
parametric and the nonparametric scenario. All the pro-
posed numerical schemes are characterized in terms of
the trade-off between estimation performance and com-
munication, computation, memory complexity. In par-
ticular, regarding the estimation performance, two types
of quantitative bounds are provided. The first types of
bounds are derived in a Bayesian parametric scenario,
are related to the estimation error variance and can be
computed off-line, i.e., before the measurements become
available to the sensors. They tend to be pessimistic but
permit to gain insights on how the uncertainty inherent
in the network, such as the imperfect knowledge on the
number of agents, can degrade the performance of the es-
timation process. The second types of bounds obtained
in this paper are more general under many aspects. The
non-parametric strategy adopted here is inspired by the
recent studies on approximated regularization methods
contained in [34], but it is extended to include a more
general model for the measurement process and to be ap-
plicable to distributed multi-agent systems. More specif-
ically, rather than a Bayesian setting, we instead con-

2



sider a scenario where the unknown function is determin-
istic and belongs to a possibly infinite-dimensional space.
In accordance with the modern paradigm of statistical
learning theory, see [35], this permits to obtain bounds
that are not affected by possible statistical modeling er-
rors on the function to reconstruct. Moreover, each sen-
sor collects noisy measurements at different locations,
which are unknown to the other sensors. The sole knowl-
edge shared by the nodes are the stochastic mechanism
fromwhich the sampling locations are drawn and the size
of the hypotheses space, that can be computed off-line
exploiting opportune guidelines. Finally, the bounds are
computed on-line, after the measurement process is per-
formed, adding some extra complexity. However, they
turn out to be accurate in quantifying the distance be-
tween the estimate of the proposed distributed version
and the estimate obtainable by a centralized version of
a Regularization Network (RN) [20,36], one of the most
powerful and used regularized kernel methods.

In particular, our bounds account for the uncertainty in
the number of sensors present in the network, the un-
certainty relative to the different measurement models
used by the agents as well as the infinite-dimensional na-
ture of the hypothesis space. Differently from the other
distributed learning approaches present in the literature
and listed above, our scheme is able to to provide a cer-
tificate of quality of the estimate on a non-asymptotic
basis.

It is important to notice that the techniques we pro-
pose rely on computation of averages, that can be
distributedly computed through consensus algorithms
[37,38,39,40]. This is attractive because of their sim-
plicity, their completely asynchronous communication
schemes, their robustness to nodes and links failures,
their scalability with the network size, and the absence
of a coordination unit. In what follows, we will assume
that the communication graph is sufficiently connected
in order to allow the computation of consensus algo-
rithms [41] and that a sufficient number of consensus
steps are performed to guarantee convergence to the
true average. In addition, we consider the static sce-
nario, where distributed inference is indeed a topic of
recent interest within the control’s community, e.g., see
[30,31,32].

The paper is structured as follows: Section 2 introduces
the parametric distributed estimator, that is characteri-
zed in Section 3. Section 4 deals with the nonparamet-
ric scenario and proposes a number of estimators, whose
tuning and quantification of prediction capabilities are
offered in Sections 5 and 6, respectively. The theoretical
results are complemented with numerical simulations in
Section 7, while in Section 8 some concluding remarks
are drawn. In the interest of clarity, all the proofs of
the propositions and theorems are gathered in the Ap-
pendix.

2 Parametric distributed estimation algorithms

In this section we consider S distinct sensors each of
them taking M scalar noisy measurements on the same
input locations. We model this scenario in a parametric
framework as

yi = Cb+ νi, i = 1, . . . , S (1)

where yi ∈ RM is the measurements vector collected by
the i-th sensor, and b ∈ RE is the vector of unknown
parameters modeled as a zero-mean Gaussian vector
with autocovariance Λ0, i.e., b ∼ N (0,Λ0). In addition,
νi ∈ RM is the noise vector with density N

(
0, σ2I

)
, in-

dependent of b and of νj , for i 6= j. Finally, C ∈ RM×E
is a known matrix identical for all sensors.

The more general scenario where the variances of the
measurement noise may be different among sensors, i.e.,
νi ∼ N

(
0, σ2

i I
)
, was addressed in [42].

2.1 Local Bayesian estimation

Under the assumptions above, the local Minimum Mean
Square Error (MMSE) estimator of b given yi is unbiased
and given by [10]

bi` := E [b |yi ] = cov (b, yi) (var (yi))
−1
yi

= Λ0C
T
(
CΛ0C

T + σ2I
)−1

yi = K` yi

=

(
Λ−1

0 +
CTC

σ2

)−1
CT yi
σ2

= H` ii

(2)

where ii := CT yi/σ
2, while the autocovariance of the

local estimation error is

Λi` = Λ` := var
(
b− bi`

)
=

(
Λ−1

0 +
CTC

σ2

)−1

(3)

and is independent of the measurements yi. In the dis-
tributed estimation framework we assume that each sen-
sor wants to exchange information in order to refine the
knowledge about b. The performance metrics will be in
terms of the estimation error variance.

2.2 Centralized Bayesian estimation

If S ≥ 2 and all measurements {yi}Si=1 are collected by a
central unit, the MMSE estimate of b given {yi}Si=1 can
be computed as

bc := cov

b,

y1

...

yS


 var



y1

...

yS



−1 

y1

...

yS

 (4)
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where

var



y1

...

yS


 =


V
(
σ2
)
. . . V (0)

...
...

V (0) . . . V
(
σ2
)
 (5)

with
V (θ) := CΛ0C

T + θI . (6)

Note that V
(
σ2
)

= var(yi), i.e., V
(
σ2
)
corresponds to

the variance of a generic measurements vector yi. Using
the matrix inversion lemma and simple algebraic manip-
ulations, (4) can be rewritten in two equivalent forms,
i.e., as

bc = Λ0C
T

(
CΛ0C

T +
σ2

S
I

)−1
(

1

S

S∑
i=1

yi

)
= Kcȳ

(7)
where ȳ := 1/S

∑S
i=1 yi and Kc ∈ RE×M or as

bc =

(
1

S
Λ−1

0 +
CTC

σ2

)−1
(

1

S

S∑
i=1

CT yi
σ2

)
= Hcī (8)

where ī := 1/S
∑S
i=1 C

T yi/σ
2 andHc ∈ RE×E . To com-

pute bc through (7), sensors need to reach an average
consensus on their sets of measurements yi, which are
M -dimensional vectors, while to compute bc through (8)
they need to reach an average consensus on the trans-
formed measurement vectors 1 ii = CT yi/σ

2 which are
E-dimensional vectors.

In order to be consistent with the nonparametric part
of the paper, we will consider only (8). Obviously, the
variance of the estimation error is the same for both the
forms, and is given by

Λc := var (bc − b) =
1

S

(
1

S
Λ−1

0 +
CTC

σ2

)−1

. (9)

2.3 Distributed Bayesian estimation

To implement the optimal estimation strategy given
in (8), sensors need both to reach consensus on their
CT yi/σ

2 and also properly weight the contribution of
the prior Λ0. This implies that all the sensors must have
perfect knowledge on S, the actual number of agents
participating to the consensus process. Since some-
times this request cannot be satisfied, it is interesting
to characterize the performance of the approximated

1 The vector ii is also known as the information vector as-
sociated to the measurement yi in the context of parametric
estimation [43].

distributed estimation strategy

bd (Sg) :=

(
1

Sg
Λ−1

0 +
CTC

σ2

)−1
(

1

S

S∑
i=1

CT yi
σ2

)
= Hd ī

(10)
where Sg is an estimate of the number of sensors in the
network. To simplify the notation, in the following we
denote bd (Sg) as bd unless differently stated. Simple al-
gebraic manipulations lead to the computation of the
corresponding estimation error covariance

Λd(Sg) :=var (bd−b)=Hd

(
1

S2
g

Λ−1
0 +

1

S

CTC

σ2

)
Hd .

(11)

Notice that for Sg = 1, then bd(1) = 1/S
∑S
i=1 b

i
`, i.e.,

the average the local estimators, while for Sg = +∞
then bd (∞) =

(
S CTC

)−1
(∑S

i=1 C
T yi

)
, i.e., the least

squares solution which discards the prior information
on b, and finally for Sg = S then bd(S) = bc, i.e., the
centralized solution.

3 Characterization of the parametric dis-
tributed estimation algorithm

In this section, we determine conditions on the parame-
ter Sg that guarantee Λd(Sg) ≤ Λ`, hence ensuring that
a distributed strategy sharing information among nodes
is better than one using only local information. More-
over, we determine the accuracy of the distributed strat-
egy (10), as compared to the centralized solution (8).
These two scenarios are addressed separately.

3.1 Distributed versus local estimation

It is possible to derive the following result.

Theorem 1 Let dmin be the smallest eigenvalue of
CΛ0C

T . If one of the two following conditions is satis-
fied:

(a)
(S − 1)dmin

σ2
> 1 (b) Sg ∈ [1, 2S − 1] (12)

then Λd ≤ Λ`.

The sufficient condition (12)-(a) implies that the dis-
tributed estimator is always better than the local one for
all Sg ∈ [1,+∞). In particular, the ratio (S− 1)dmin/σ

2

can be interpreted as the smallest signal-to-noise ratio
(SNR) among all possible output directions, therefore
the inequality states that if the SNR is sufficiently large,
then the distributed estimator always provides a better
performance than the local one. The second sufficient
condition (12)-(b) of the previous Theorem can be con-
sidered universal since it holds for every prior Λ0, num-
ber of measurementsM , number of parameters E, mea-
surement noise variance σ2, and matrix C. It assures
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that there exists a large set of potential guesses of num-
ber of sensors Sg for which the distributed estimator bd
is performing better than the local one b`, for all possible
SNRs. In particular, this theorem confirms the intuition
that the average of the local estimators, i.e., Sg = 1, al-
ways produces a better estimate. Moreover, even rough
estimates of S are likely to improve the estimation per-
formance as compared to the local estimator.

Although the conditions in Theorem 1 are only sufficient,
they are nonetheless tight, in the sense that there are
scenarios for which, if they are not satisfied, then Λd >
Λ`. This is in fact the case of scalar systems, i.e., b ∈ R,
as shown in Section 3.3.

3.2 Distributed versus centralized estimation

Although we always have Λc ≤ Λd, it is relevant to study
the influence of the parameter Sg on the distance be-
tween the centralized estimator bc and the distributed
estimator bd. If prior bounds about the unknown pa-
rameter S are available, i.e., S ∈ [Smin, Smax], then it is
possible to prove the following theorem:

Theorem 2 Under the assumption thatS ∈ [Smin, Smax]
then

‖bd − bc‖2
‖bd‖2

≤ Smax

Smin
− 1 (13)

for all Sg ∈ [Smin, Smax].

Although the bound provided in the theorem could be
ameliorated if additional knowledge about Λ0 and C
were available, it is tight as shown in the example below.

3.3 Numerical examples

We consider the particular scalar case E = 1, M = 1,
Λ0 = 1, C = 1 and S = 100, which implies dmin = 1, and
analyze the performance of the distributed estimator as
a function of the the measurement noise level σ2 and the
guess Sg. In this special scenario, it is possible to show
that the bounds of Theorem 1 and 2 are indeed tight. In
fact, according to condition (12)-(a), Theorem 1 is sat-
isfied for σ2 < σ2

c := 99. However, it is easy to verify
that if σ2 = σ2

c and Sg > 2 · 104 then Λd(Sg) > Λ`. Sim-
ilarly, according to condition (12)-(b), Λd(Sg) ≤ Λ` for
Sg ≤ 2S − 1, however it can be checked that if Sg ≥ 2S
and σ2 > 4 · 104 then Λd(Sg) > Λ`. Figure 1 graphically
displays the distributed estimator error performance Λd
as a function of Sg for different values of the measure-
ment noise variance σ, as well the local estimator per-
formance Λ` = σ2

σ2+1 ≈ 1.

Under the same scalar scenario, Figure 2 compares the
true relative error

ed =
‖bd − bc‖2
‖bd‖2

=

∣∣∣∣ (S − Sg)σ2

(S + σ2)Sg

∣∣∣∣ (14)

with bound (13) provided in Theorem 2, for different

0 100 200 300 400 500 600

0

0.5

1

1.5

2

Sg

Λ
d

(S
g
)

σ2 = 10

σ2 = 102

σ2 = 103

σ2 = 104

Λ`

2S − 1

Figure 1. Estimation error variance Λd of the distributed es-
timator bd defined in (11) as a function of Sg for different
values of σ2, for the particular case E = 1, M = 1, Λ0 = 1,
C = 1 and S = 100. The dotted gray line approximatively
indicates the estimation error variance Λ` of the local esti-
mators.

values of Smax/Smin, Sg, S and σ2. Although this bound
is often pessimistic, it is indeed tight, in fact forS = Smax
and Sg = Smin then limσ2→+∞ ed = Smax

Smin
− 1.

1 1.5 2 2.5 3
0

0.5

1

1.5

2

Smax/Smin

e d

Eq. (12)
(A)
(B)
(C)
(D)
(E)

Figure 2. Dependency of the relative error ed =
‖bd−bc‖2
‖bd‖2

on
Smax/Smin and σ2 for various choices of Sg, for the scenario
E = 1, M = 1, Λ0 = 1, C = 1. (A): Sg = S. (B): S = Smin,
Sg = Smax, σ2 = 102. (C): S = Smax, Sg = Smin, σ2 = 102.
(D): S = Smin, Sg = Smax, σ2 = +∞. (E): S = Smax,
Sg = Smin, σ2 = 104. “bound”: bound (13).

A more realistic scenario would also include uncertainty
on the mean and variance of the measurement process.
A possible generalization is, for example, to consider
a probabilistic model for the mean and variance based
on some hyper-parameters, and then find performance
bounds on these hyper-parameters. However, these
derivations are not straightforward, and we rather pro-
pose to address the need of a more realistic measurement
processes by considering a non-parametric scenario.

4 Nonparametric distributed function estima-
tion

4.1 Centralized scenario

Let fµ : X → R denote an unknown deterministic func-
tion defined on the compact X ⊂ Rd. Assume there are
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S sensors, each collecting a single noisy measurement 2

yi where

yi = fµ (xi) + νi, i = 1, . . . , S (15)

with νi white noise and i the sensor index. We assume
that each input location xi is known only to the i-th
sensor and that it is independently drawn from a prob-
ability measure µ known to all the sensors.

Given the data set {xi, yi}Si=1, one of the most used ap-
proaches to estimate fµ relies upon the Tikhonov regu-
larization theory [44]. The hypothesis space is typically
given by a reproducing kernel Hilbert space (RKHS) de-
fined by a Mercer Kernel K : X × X → R [45,46,47]. In
particular, let L2 (µ) be the set of the Lebesgue square
integrable functions under the measure µ, and define the
positive integral operator

LK,µ [g] (x) :=

∫
X
K (x, x′) g (x′) dµ (x′) . (16)

Its eigenvalues λe and eigenfunctions φe can be com-
puted as , e.g., in [17], and satisfy

λeφe (x) = LK,µ [φe] (x) (17)

with λ1 ≥ λ2 ≥ . . . ≥ 0. The following result holds.

Theorem 3 ([48]) LetK be a Mercer kernel on X ×X ,
λe > 0 ∀e and µ a non-degenerate measure 3 . Then,
{φe}+∞e=1 is an orthonormal basis in L2 (µ) while the as-
sociated RKHS is

HK :=
{
g ∈ L2 (µ) s.t. g =

∑∞
e=1 αeφe

with {αe} s.t.
∑∞
e=1

α2
e

λe
< +∞

}
.

(18)

Moreover, if g1 =
∑+∞
e=1 αeφe and g2 =

∑+∞
e=1 βeφe, their

inner product is 〈g1, g2〉HK =

+∞∑
e=1

αe · βe
λe

.

Notice that, if g =
∑+∞
e=1 αeφe ∈ HK and α :=

[α1, α2, . . .]
T , orthogonality of eigenfunctions in L2 (µ)

implies that

‖g‖2L2(µ) =

+∞∑
i=1

+∞∑
j=1

αiαj

∫
X
φi (x)φj (x) dµ (x) = ‖α‖22 .

(19)

2 The assumption of a single measurement per sensor has
been posed only for brevity and is not restrictive for our
purposes.
3 A Borel measure µ is said to be non-degenerate w.r.t. the
Lebesgue measure L2 if L2 (A) > 0⇒ µ (A) > 0 for every A
in the Borel σ-algebra.

In the following, we will use the shorthands ‖·‖µ for
‖·‖L2(µ) and ‖·‖K for ‖·‖HK .

According to the regularization theory, a common choice
for the cost function is

Q (f) :=

S∑
i=1

(yi − f (xi))
2

+ γ ‖f‖2K (20)

and the estimate of the unknown function is

fc := arg min
f∈HK

Q (f) . (21)

In (20), γ is the so called regularization parameter that
trades off empirical evidence and smoothness informa-
tion on fµ. It is well known that fc admits the structure
of a Regularization Network, see [49], being the sum of
S basis functions with expansion coefficients obtainable
by inverting a system of linear equations. More precisely,
one has

fc =

S∑
i=1

ciK (xi, ·) ,


c1
...

cS

 = (K + γI)
−1


y1

...

yS


(22)

where

K :=


K (x1, x1) · · · K (x1, xS)

...
...

K (xS , x1) · · · K (xS , xS)

 . (23)

Remark 4 The estimate fc in (21) admits also a
Bayesian interpretation. In fact, if fµ is modeled as the
realization of a zero-mean Gaussian random field with
covariance K, the noise νi is Gaussian, independent
of the unknown function and with variance σ2, setting
γ = σ2 one has

fc (x) = E
[
fµ (x)

∣∣∣{xi, yi}Si=1

]
. (24)

Hence, under such Bayesian perspective, the problem of
reconstructing fµ is a generalization of that discussed in
Section 2. The increased complexity derives from the fact
that the problem is now infinite-dimensional and each
sensor has not a complete knowledge of the measurement
model of the other agents, since the input location xi is
known only to the i-th sensor.

Notice that the computation of fc requires O
(
S3
)
oper-

ations and the processing unit has to store all the xi’s.
This can be impractical in a distributed estimation sce-
nario, where agents may have both limited computa-
tional and communication resources. To overcome these
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problems, in Section 4.2 we will derive an alternative dis-
tributed estimation strategy by restricting the hypothe-
sis space to a closed subspace H̆K ⊂ HK . The following
proposition shows that the resulting estimator has favor-
able theoretical properties. In particular, as the number
of sensors S goes to +∞, it returns the best possible ap-
proximation of fµ in H̆K . The result is obtained along
the same lines used in [50,51] to characterize the estima-
tor (21).

Proposition 5 Let 0 < δ < 1 and define the closed sub-
space H̆K := spane∈I {φe}, where the overline denotes
the closure in HK , and where I ⊂ N+. Define 4

f̂S := arg min
f∈H̆K

S∑
i=1

(yi − f (xi))
2

S
+ γ ‖f‖2K . (25)

Then, assuming |yi| ≤ Y a.s. 5 , if S → +∞ then f̂S
converges in probability to the projection of fµ onto H̆K ,
denoted by f H̆Kµ . In particular, let

γ =
8K

2
log
(

4
δ

)
√
S

, K := sup
x1,x2∈X

√
K (x1, x2) , (26)

D :=

√
2 log

(
4
δ

)
S

1
4

(
3Y +2K

∥∥∥f H̆Kµ

∥∥∥
K

)
+
∥∥∥f H̆⊥

K
µ

∥∥∥
µ

where f H̆
⊥
K

µ is the projection of fµ onto the orthogonal of
H̆K in HK . Then

P
[∥∥∥f̂S − fµ∥∥∥

µ
≤ D

]
≥ 1− δ . (27)

Remark 6 Despite of the possible stochastic interpreta-
tion of the problem recalled in Remark 4, in all this section
fµ always represents an unknown but deterministic func-
tion. It is worth stressing that in this scenario the bounds
that one obtains, regarding the performance of the pro-
posed estimator, are more robust since are not affected by
errors in the statistical modeling of fµ. This is in accor-
dance with the modern statistical learning theory as de-
scribed, e.g., in [35]. An example of this has been already
provided in Proposition 5 where the validity of (27) just
requires fµ to belong to an infinite-dimensional space that
may contain a very wide class of functions. For instance,

4 We notice that (25) is identical to (20) up to a factor S
dividing the regularization parameter γ. The choice for this
notation has been driven by a desire of consistency with the
notation used in [50,51].
5 This is a standard assumption in the modern statistical
learning literature. It is easy to relax it to handle Gaussian
noises scenarios, but this would excessively complicate the
proofs in a way that is beyond the scope of this paper.

popular choices for HK are Sobolev spaces or spaces in-
duced by the Gaussian kernel which are all known to be
dense in the space of continuous functions, e.g., see [52].

We now consider a particular finite-dimensional sub-
space H̆K , denoted byHEK , that is generated by the first
E eigenfunctions φe, i.e.,

HEK :=
{
g ∈ L2 (µ) s.t. g =

∑E
e=1 αeφe

with [α1, . . . , αE ]
T ∈ RE

}
.

(28)

The particular choice for HEK is motivated by the pres-
ence of the penalty term ‖·‖2K used to obtain the func-
tion estimate. It can also be justified using the Bayesian
framework described in remark 4 under which, before
seeing the data, HEK represents the subspace that cap-
tures the biggest part of the signal variance among all
the subspaces of dimensionE. This is in accordance with
the Rayleigh’s principle [53,54] which underlies Princi-
pal Component Analysis.

UsingHEK as hypothesis space, the estimate of fµ is given
by 6

fr := arg min
f∈HE

K

Q (f) . (29)

As it will be clear in the sequel, it is now convenient
to reformulate the estimates fc and fr through the
map T : HK → R∞ that is induced by definition (18)
and associates to a function f =

∑+∞
e=1 aeφe the se-

quence [a1, a2 . . .], i.e., T [f ] = [a1, a2, . . .]
T . With a

little abuse of notation, we also equip R∞ with the

norm ‖a‖2K :=

+∞∑
e=1

a2
e

λe
so as to make T an isometric

mapping. In what follows, if A is a matrix with an in-
finite number of columns and rows, and w is a column
vector with an infinite number of rows, then Aw is the
vector with i-th element equal to

∑∞
j=1[A]ijwj . In ad-

dition, A−1 denotes the inverse of the operator induced
by A, i.e., we use notation of ordinary algebra to handle
infinite-dimensional objects.

Exploiting T [·], the measurement model (15) can thus
be rewritten as

yi = Cib+ νi i = 1, . . . , S (30)

where b = T [fµ] and 7

Ci := [φ1 (xi) φ2 (xi) . . .] . (31)

Notice that Ci is a stochastic i.i.d. sequence whose dis-
tribution depends on µ. The two following propositions

6 We use the subscript r to recall that fr lies in a reduced
hypothesis space.
7 We recall that the λe’s and φe’s can be computed as in [17].

7



can be obtained as immediate consequences of the re-
sults in [34], thus proofs are omitted.

Proposition 7 Let

Q (b) :=

S∑
i=1

(yi − Cib)2
+ γ ‖b‖2K . (32)

Then

bc := arg min
b
Q (b)

=

(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)−1( S∑
i=1

CTi yi

)
(33)

with diag (αe) to indicate the matrix with diagonal el-
ements given by α1, α2, . . .. Furthermore, T [fc] = bc
where fc is defined in (21).

Since (33) involves infinite dimensional vectors, approx-
imated solutions in HEK are now searched. To this aim,
defining

CEi = CE (xi) := [φ1 (xi) , · · · , φE (xi) , 0, 0, . . .] (34)

the following proposition is obtained.

Proposition 8 Let

QE (b) :=

S∑
i=1

(
yi − CEi b

)2
+ γ ‖b‖2K . (35)

Then

br := arg min
b
QE (b)

=

(
diag

(
γ

λe

)
+

S∑
i=1

(
CEi
)T
CEi

)−1( S∑
i=1

(
CEi
)T
yi

)
(36)

and T [fr] = br where fr is defined in (29).

Notice that even if
(
CEi
)T
CEi is an infinite dimensional

matrix, only its E×E upper-left block can contain non-
zero elements. In the same way, every infinite dimen-
sional vector

(
CEi
)T
yi can have non-zero elements only

in its first E components. This implies that also br can
have non-zero elements only in its first E components.

4.2 Distributed scenario

The steps developed in the previous section are reminis-
cent of the work [34]. In this section, these steps are used
as a starting point for a different analysis whose aim is
to understand how (33) can be distributedly computed.
We also propose an additional estimator which is sim-
pler to compute in a distributed scenario and we quan-
tify its performance. To this aim, the expression for br

given in (36) can now be rewritten in a form suited to
distributed estimation, i.e.,

br=

(
1

S
diag

(
γ

λe

)
+

1

S

S∑
i=1

(
CEi
)T
CEi

)−1(
1

S

S∑
i=1

(
CEi
)T
yi

)
(37)

This shows that br can be distributedly computed
through two parallel average consensus algorithms, one
on
(
CEi
)T
CEi and one on

(
CEi
)T
yi). However, prac-

tical implementation of (37) may still be problematic.
In fact, the agents must know the exact number of
measurements/sensors S. In addition, the amount of
information that needs to be transmitted could be too
elevated, since it scales with the square of E. For these
reasons, it is useful to define another approximation of
bc (and br) as follows

bd :=

(
1

Sg
diag

(
γ

λe

)
+ I

)−1
(

1

S

S∑
i=1

(
CEi
)T
yi

)
.

(38)
Notice that bd is an approximation of br since

(1) parameter S weighting the regularization term
diag (γ/λe) is replaced with a guess (or estimate)
Sg;

(2) 1
S

∑S
i=1

(
CEi
)T
CEi is replacedwithEµ

[(
CEi
)T
CEi

]
.

In fact, Eµ
[(
CEi
)T
CEi

]
= I because one has

[
1

S

S∑
i=1

(
CEi
)T
CEi

]
mn

=
1

S

S∑
i=1

φm (xi)φn (xi)

(39)
and, in addition,

1

S

S∑
i=1

φm (xi)φn (xi)
S→+∞−−−−−→

→
∫
X
φi (x)φj (x) dµ (x) = δij

(40)

due to the orthogonality of eigenfunctions in L2 (µ)
and the fact that the xi’s are i.i.d. and extracted
from µ.

4.3 Complexity analysis

It is important to evaluate the tradeoffs in terms of
computational, communication and memory complex-
ity for the proposed estimators. The centralized esti-
mator bc given in (33) is equivalent to the estimator
given in (22). It requires the collection and storage at
each node of all measurements yi and input locations xi,
which accounts for communication and memory com-
plexity of O(S), since we assume a fixed number of mea-
surements per node. The computational complexity is
dominated by the inversion of the matrix K+ γI which

8



has the size of the number of measurements, therefore
it is of order O(S3). The estimator br given in (37) re-
lies on average consensus algorithms to compute the
averages 1/S

∑S
i=1

(
CEi
)T
CEi and 1/S

∑S
i=1

(
CEi
)T
yi.

Since typical average consensus algorithms require the
storage and exchange of quantities with the same size
of the desired averages at each iteration [40], if they are
performed for a fixed number of iterations, then the com-
munication and memory complexity are given by O(S2)

which is the size of 1/S
∑S
i=1

(
CEi
)T
CEi . The compu-

tational complexity is dominated by the inversion of a
matrix of size E, and it is therefore of order O(E2). Fi-
nally, the estimator bd given in (38) requires only the
computation of the average 1/S

∑S
i=1

(
CEi
)T
yi and the

inversion and multiplication of a diagonal matrix with a
vector of size E, therefore its communication, memory
and computational complexity is of order O(E). These
considerations are summarized in Table 1.

estimator comput.
cost

commun.
cost

memory
cost

bc (Eq. (33)) O
(
S3

)
O (S) O (S)

br (Eq. (36)) O
(
E3

)
O
(
E2

)
O
(
E2

)
bd (Eq. (38)) O (E) O (E) O (E)

Table 1
Computational, communication and memory costs associ-
ated to the introduced estimators.

5 Selection of the number of eigenfunctions E

Let E be the maximum admissible value for E, given by
computational complexity and transmission capability
constraints. Since setting E to E could lead to resource
wasting, in this section we derive some guidelines for
a possibly more parsimonious choice exploiting the a
priori information that can be available to the user. We
remark that the strategies reported below provide only
practical indications on the choice of E before seeing the
data. However, the choice of E can be validated using
Algorithm 3 developed in Section 6 after seeing the data.

There are mainly two ways for tuningE before seeing the
data. The first is based only on the kernel K and selects
E based on the cumulative energy of its eigenvalues, as
summarized in Algorithm 1.

Algorithm 1 Selection of E (First strategy)
1: Choose a threshold ε ∈ (0, 1), corresponding to se-

lect a pre-defined fraction of the approximation ca-
pabilities of the base {φi}∞i=1;

2: compute E = min E s.t.
E∑
e=1

λe ≥ ε
+∞∑
e=1

λe.

Differently, the second strategy tries to include also the
prior information about the probability measure µ from

which the input locations are drawn. This strategy se-
lects E based on a approximate bound of relative dis-
tance between bc and br. Exploiting inequality (A.34) in
the proof of Proposition 9 and the equivalence yi−Cibr =
(yi − Cibµ)+(Cibµ − Cibr), where bµ = T [fµ] is the true
signal defined in (15), we can write

‖bc − br‖2
‖br‖2

≤
S∑
i=1

∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T∥∥∥∥
2

ξi (41)

where ξi :=
‖νi‖2
‖br‖2

+
‖Ci (bµ − br)‖2

‖br‖2
.

We start assuming that the errors ‖Cibµ − Cibr‖2 are
smaller than κ times the standard deviation of the mea-
surement noise. Therefore, κ regulates the degree of con-
servativeness of this assumption. A reasonable choice is
κ = 3. We also use the inverse of the SNR as an approx-
imation of both ‖νi‖2‖br‖2

and σ
‖br‖2

. Hence, ξi is replaced by
(κ+ 1)SNR−1. Finally, for S sufficiently large the quan-
tity

SmaxE
[∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T∥∥∥∥
2

]

overestimates
S∑
i=1

∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T∥∥∥∥
2

. The expecta-

tion above can be computed using Monte Carlo tech-
niques up to a desired level of accuracy. All the argu-
ments above lead to the following Algorithm 2. Once
again it is important to remark that only a rough esti-
mate of E is necessary at this stage and that it can be
validated a-posteriori based on the performance analysis
provided in Section 6.

Algorithm 2 Selection of E (Second strategy)
1: Assume to have a bound on the SNR, choose a

threshold ε for the maximal tolerable error ‖bc−br‖2‖bµ‖2
and choose a degree of conservativeness κ;

2: compute the minimal value of E s.t.

(κ+ 1)SNR−1SmaxE
[∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T∥∥∥∥
2

]
≤ ε
(42)

where we remark the dependence of the expectation
on E.

6 Assessment of the quality of the estimates

Once the choice of E is set, then it is crucial to assess
the quality of bd in terms of its closeness to the opti-
mal centralized estimate bc. To this regard, the following
two results, namely Algorithm 3 and the related Propo-
sition 9, represent the main results of this section. They
provide a way to compute, in a distributed fashion, sta-
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tistical bounds for the relative errors

‖bd − bc‖2 / ‖bd‖2 and ‖bd − br‖2 / ‖bd‖2

which, in view of (19) and letting fd = T−1 [bd], coincide
respectively with

‖fd − fc‖µ / ‖fd‖µ and ‖fd − fr‖µ / ‖fd‖µ .

In the sequel, let

C
\E
i := [0 · · · 0φE+1 (xi) φE+2 (xi) · · · ] . (43)

Furthermore, to compact the notation, let

Vr :=

(
1

S
diag

(
γ

λe

)
+

1

S

S∑
i=1

(
CEi
)T
CEi

)−1

(44)

Vd :=

(
1

Sg
diag

(
γ

λe

)
+ I

)−1

. (45)

Algorithm 3 Distributed estimation and approxima-
tion quality evaluation

Off-line work: Sensors are given a level of confi-
dence 1− δ, e.g., δ = 0.1, and know Smin, Smax, Sg,
µ, E, as well as the quantity

U∗S :=

(
1

Smin
− 1

Smax

)
diag

(
γ

λe

)
. (46)

In addition, each sensor i stores a particular sce-
nario of the network, i.e., it locally generates Smin
independent virtual input locations xi,j by means of
density µ

xi,j ∼ µ where j = 1, . . . , Smin (47)

and then compute the following quantities

CEi,j := [φ1 (xi,j) , . . . , φE (xi,j)] (48)

V ∗r,i :=

 1

Smax
diag

(
γ

λe

)
+

1

Smax

Smin∑
j=1

(
CEi,j

)T
CEi,j

−1

(49)

U∗C,i :=

I − 1

Smin

Smin∑
j=1

(
CEi,j

)T
CEi,j

 . (50)

. continues in the next page

Proposition 9 Consider Algorithm 3 and the defini-
tions therein. Then, conditioned on z and rave, it holds
that

P

(
‖fr − fd‖µ
‖fd‖µ

≤ d|dr| (δ)
)
≥ 1− δ (60)

. continuation of Algorithm 3
On-line and distributed work:

1: (distributed) sensors distributedly compute, by
means of average consensus protocols, the E-

dimensional vector z :=
1

S

S∑
i=1

(
CEi
)T
yi

2: (local) each sensor i computes the estimate bd = Vdz
3: (local) each sensor i computes the auxiliary scalars

ri :=

∥∥∥∥diag
(
λe
γ

)(
C
\E
i

)T (
yi − CEi bd

)∥∥∥∥
2

‖bd‖2
(51)

si :=

∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T
CEi

∥∥∥∥
2

(52)

d∗|dr|,i :=

∥∥V ∗r,iU∗Sbd∥∥2

‖bd‖2
+

∥∥V ∗r,iU∗C,ibd∥∥2

‖bd‖2
(53)

4: (distributed) sensors distributedly compute, by
means of average consensus protocols, the scalars

rave :=
1

S

S∑
i=1

ri save :=
1

S

S∑
i=1

si (54)

d∗|dr|,ave :=
1

S

S∑
i=1

d∗|dr|,i (55)

d∗|dr|,sq :=
1

S

S∑
i=1

(
d∗|dr|,i

)2

(56)

5: (local) each sensor i computes

d∗|dr|,var := d∗|dr|,sq −
(
d∗|dr|,ave

)2

(57)

d|dr| (δ) := d∗|dr|,ave +

√(
1

δ
− 1

)
d∗|dr|,var (58)

d|dc| (δ) := Smaxrave + d|dr| (1 + Smaxsave) . (59)

P

(
‖fc − fd‖µ
‖fd‖µ

≤ d|dc| (δ)
)
≥ 1− δ . (61)

Remark 10 The results of Proposition 9 are intrinsi-
cally different from the ones of Proposition 5. While the
latter refers to the consistency of estimators in generic
closed subspaces, i.e., to the distance between the esti-
mand and the estimates, the former refers to the degree
of approximation committed by discarding the eigenfunc-
tions φE+1, . . .. We also notice that these are a posteriori
bounds, being computed after the measurement process.
A priori bounds, that could be computed similarly, gen-
erally return overly pessimistic and thus useless results.
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The proof of Proposition 9 is reported in Appendix and
clarifies the quantities that influence the approximation
error. In particular, here we just recall that defining

UC := I − 1

S

S∑
i=1

(
CEi
)T
CEi , (62)

US :=

(
1

Sg
− 1

S

)
diag

(
γ

λe

)
(63)

it follows ‖fd − fr‖µ ≤ ‖VrUSbd‖2 + ‖VrUCbd‖2 , (64)

i.e., the error between fd and fr decomposes into two
distinct parts, one involving US , proportional to the un-
certainty on the number of sensors, and one involving
UC

8 , related to the uncertainty on the actual input lo-
cations xi.

Moreover, for what regards the distance of fd from the
optimal estimate fc, it holds that

‖fd − fc‖µ ≤ (saveSmax + 1) ‖bd − br‖2 +

+
∑S
i=1

∥∥∥∥diag
(
λe
γ

)(
C
\E
i

)T (
yi − CEi bd

)∥∥∥∥
2

,

(65)
i.e., the error between fd and fc contains the two compo-
nents described in (64) (scaled by a multiplicative factor
always greater than one) plus a term dependent on the
sum of the residuals multiplied by a quantity that ac-
counts for the approximation error deriving from replac-
ing HK with HEK . Notice that the various ri and si de-
fined in (51) and (52) are infinite dimensional quantities
but can be locally computed up to the desired accuracy
using a finite number of operations.

Summarizing, the stochastic interpretation of Remark 4
assures the approximation capabilities of (21) and (33)
to be the ones of centralized Gaussian processes kernel
regression strategies. Since distributed implementations
are not feasible, we obtain the novel estimators (36)
and (38) relying on opportune approximations. Thanks
to Proposition 9 and Algorithm 3, agents can then eval-
uate on-line these performances losses (feature not sup-
ported by other techniques, e.g., [33]).

For what regards possible extensions of the algorithm de-
scribed above, first notice that sensors aiming for more
precision on the bounds may locally generate several
instances of d∗|dr|,i and then estimate the bounds with
the desired level of accuracy. In addition, we also re-
mark that the assumptions on the independence of the
various xi’s can be relaxed. In particular, Algorithm 3
and Proposition 9 can be easily extended to handle the

8 For an interesting bound on the norm of matrices of the
type UC , as a function of the number of sensors S and of the
dimension E, the reader is also referred to Lemma 1 in [55].

case of sensors moving according to an ergodic Markov
chain (e.g., generated by the Metropolis-Hastings algo-
rithm [56]) having as invariant measure the desired dis-
tribution µ. Finally, it is worth stressing that the entire
numerical procedure proposed in this work can also be
easily modified to permit the optimization of the regu-
larization parameters present in (33), (36) and (38). For
example, the value of γ can be discretized into a finite
number of values common to all the sensors and then the
“optimal” value can be chosen as the one that minimizes
the distance bounds presented above. We eventually re-
mark that the kernelK is given before the measurement
process. Learning the kernel from the measurements has
received a noticeable attention in centralized scenarios,
see, e.g., [57]. It is nonetheless still an open problem in
distributed ones.

7 Numerical examples

Let fµ : [0, 1]× [0, 1]→ R be defined by

fµ (x1, x2) = β

100∑
n=1

αn sin

(
[ω′n ω

′′
n]

[
x1

x2

])
(66)

with αn ∼ N (0, 0.01) i.i.d., ω′n, ω′′n ∼ U [0, 15] i.i.d.,
µ ∼ U [0, 1] × U [0, 1]. We will consider a Monte Carlo
scenario where at any run the function fµ is defined by
independent realizations of the parameters αn, ω′n, ω′′n
and has to be reconstructed from direct measurements
corrupted by noise with standard deviation σ = 2. The
parameter β in (66) is adjusted at each run in order to
ensure that

SNR :=

∫
X
(
fµ −

∫
X fµdµ

)2
dµ

σ2
= 2 .

To reconstruct fµ, we use the Gaussian kernel

K (x1, x2;x′1, x
′
2) = exp

(
− (x1 − x′1)

2
+ (x2 − x′2)

2

0.02

)
(67)

where γ = 1 defines the estimators (33) and (38). Note
that the function to be estimated fµ does not belong to
the space generated by this kernel.

The number of eigenfunctionsE is obtained by consider-
ing the algorithms proposed in Section 5. Figure 3 shows
the values of E returned by Algorithms 1 and 2, applied
to the following experiment of Figure 5, and fed with
various values for the threshold ε. We notice that the ex-
ponential decays are inherited by the exponential decay
of eigenvalues λe associated to the Gaussian kernel. The
number E that will be used in the simulations below is
selected based on Algorithm 2 by setting ε = 0.05 (indi-
cated in figure with a gray dashed line), which returns
E ≈ 100. We recall that the threshold ε has different
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meanings for the two algorithms: in Algorithm 1 it in-
dicates the fraction of the approximation capabilities of
the base {φi}∞i=1; in Algorithm 2 it indicates a bound on
the relative distance ‖νi‖2‖br‖2

.

10210010−210−410−6

50

100

150

200

ε

E ε = 0.05
Alg. 1
Alg. 2

Figure 3. Values of E returned by Algorithms 1 and 2 fed
with various choices of the threshold ε and applied to the
experiment of Figure 5 with Smax = 2100, SNR = 2 and
κ = 2. The vertical gray dashed line indicates ε = 0.05.

As for the algorithm proposed in Section 6, we consider
100 runs, i.e., 100 independent realizations 9 of fµ each
sampled by S = 2000 sensors (measurements) and es-
timated using E = 100 eigenfunctions. At each run we
apply Algorithm 3 to compute the quantities d∗|dr|,ave
and d∗|dr|,var, defined in (55) and (57). With d∗|dr|,ave and
d∗|dr|,var we then compute two versions of bound (59):
the means d|dc| (1) and the means plus three standard
deviations d|dc| (0.1).

Figure 4 plots the true normalized distances between the
centralized estimates fc and the distributed ones fd ver-
sus the relative bounds computed through Algorithm 3,
i.e., the points

(‖fd−fc‖µ
‖fd‖µ

, d|dc| (δ)
)
for different values

of the parameter δ and for different uncertainties on the
number of sensors, i.e., Smax, Smin. In the left panel, the
uncertainty on S is smaller (Smin = 1900, Smax = 2100)
than the one on the right panel (Smin = 1500, Smax =
2500).

We remark that the choice δ = 1 corresponds to com-
pute bound (59) exploiting just the average of the local
bounds (53). To set δ = 0.1 corresponds instead to a
more conservative choice, where (59) is computed from
the average of the (53)s plus 3 times their (empirical)
standard deviation.

In both panels, the points corresponding to δ = 1 are
near the bisector of the first quadrant (black dashed
line). This means that bound (59) is in this case signi-
ficative. Its conservativeness is graphically given by the
vertical distance of the points with the bisector. If the
bound is computed exploiting also 3 standard deviations
of the (53)s (δ = 0.1) then the conservativeness of the

9 In the interest of clarity, instead of writing fµ,j with j =
1, . . . , 100, we will used the simplified notation fµ, unless
differently stated. The same applies for the other quantities
considered in this section.

0 0.2 0.4
0

0.2
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0.6

0.8

1

‖fd − fc‖µ
‖fc‖µ

d
|d
c
|(
δ)

Smin = 1900
Smax = 2100

δ = 0.1 δ = 1

0 0.2 0.4

‖fd − fc‖µ
‖fc‖µ
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Smax = 2500

Figure 4. Scatter plot of the points
( ‖fd−fc‖µ
‖fd‖µ

, d|dc| (δ)
)
for

δ = 0.1 (circles) and δ = 1 (triangles). S = 2000, E = 100.
Left panel: Smin = 1900, Sg = Smax = 2100. Right panel:
Smin = 1500, Sg = Smax = 2500.

bound increases, as expected. In the right panel it is pos-
sible to see that a higher uncertainty on S leads to less
informative bounds. Nonetheless, as it will be shown in
Figure 7, high levels of uncertainty do not necessarily
imply bad estimation performance.

In Figure 5 we focus on the first Monte Carlo run, that
well represents the average performance of the proposed
estimators. The effectiveness of the estimation strat-
egy (38) is illustrated plotting the true fµ, the central-
ized estimate fc and the distributed estimate fd (Sg =
2100). It is apparent that the quality of the distributed
estimator is close to the quality of the centralized esti-
mator.

In Figure 6, considering again the first Monte Carlo run,
we show the qualitative dependence of d|dc| (0.1) on S
andE. As expected, the tightness of the bound generally
increases withE and S. This is caused also by the general
diminishing of the average of the weighted residuals (51)
when S increases.

We then show in Figure 7 the dependency of the quality
of the estimates fd with respect to the accuracy of the
guess Sg. The bounds displayed in Figure 4 are differ-
ent since they are obtained using different values for Sg,
related to different levels of knowledge about the true
number of sensors S. From (38), one can notice that Sg
plays the same role of γ, i.e., Sg is for all purposes a reg-
ularization parameter. Hence computing fd as Sg varies
corresponds to obtain the regularization path, see [11,
Sec. 16]. Figure 7 shows the relative errors

‖fµ−fc‖µ
‖fµ‖µ

and
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Figure 5. Results of the proposed estimation strategy: true
function fµ (top), centralized estimate fc (middle), and dis-
tributed estimate fd (bottom), for Sg = 2100, S = 2000,
E = 100, Smin = 1900 and Smax = 2100.
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Figure 6. Dependence of d|dc| (0.1) on S andE. Smin = 0.9·S,
Sg = Smax = 1.1 · S.

‖fµ−fd‖µ
‖fµ‖µ

for different ratios Sg/S, with S = 2000 and
E = 100, pointing out the robustness of the proposed
estimator.

We finally consider the dependency of the accuracy of
the estimates with respect to the number of used eigen-
functions E. We show in Figure 8 boxplots summarizing
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Figure 7. Boxplots relative to the relative errors
‖fµ−fc‖

µ

‖fµ‖µ
(leftmost boxplot) and

‖fµ−fd‖µ
‖fµ‖

µ

(the other boxplots) for dif-

ferent ratios Sg/S, with S = 2000 and E = 100. Sg/S = +∞
corresponds to a LS solution.

the relative errors
‖fµ−fd‖µ
‖fµ‖µ

for 1000 independent real-
izations of fµ estimated with increasing values of E. As
expected, the accuracy tends to increase rapidly with E
up to a certain value, and after that the informative con-
tent of the succeeding eigenfunctions is negligible. The
plot confirms the goodness of the choice E = 100.
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Figure 8. Boxplots relative to the dependency of the accu-
racy of the estimations with respect to the number of eigen-
functions E. S = 2000, Sg = Smax = 2100.

8 Conclusions

In this work we have proposed distributed estimators for
regression problems in sensor networks without strong
topological knowledge and with agents constrained by
computational and communication limits. Both para-
metric and nonparametric scenarios have been consid-
ered.

In the parametric context, where the goal is to recon-
struct a common finite-dimensional random vector, we
proposed a simple distributed estimator and character-
ized how the estimation accuracy is influenced by the
limited knowledge about the actual number of sensors
S in the network. We also characterized the estimator
performance as a function of the estimate of S, deriving
some mild sufficient conditions ensuring the distributed
scheme to perform better than the local ones. The per-
formance loss with respect to the optimal centralized es-
timator has been also quantified.

In the nonparametric scenario we considered the prob-
lem of reconstructing a deterministic function from

13



sparse noisy data collected from the sensors. In this
context, the problem is much more difficult since not
only S can be uncertain, but also the physical locations
where the sensors sample the function can. In addition,
one needs to handle the infinite-dimensional nature of
the hypothesis space the unknown map is assumed to
belong to. We have shown how a distributed version of a
Regularization Network can be efficiently computed by
the agents just using consensus schemes. More impor-
tantly, we have also shown how the agents can compute
a certificate of quality on the estimate that accounts
for all the uncertainty inherent in the sensor network.
To this regard, it is worth also noticing that our anal-
ysis permits to interpret the value of S entering the
nonparametric estimator as a regularization parameter
that trades-off bias and variance by balancing the un-
certainty on the number of sensors in the network and
the uncertainty on the locations where the function is
sampled.

Possible avenues for future research include the use of
the proposed results to tune on-line the regularization
parameter γ, the analysis of the impact of a finite num-
ber of steps in the consensus algorithms on the over-
all performance, and very importantly, the extension to
dynamic scenarios where measurements are sampled se-
quentially and the unknown function can change over
time, possibly using using Kalman filtering or average-
tracking strategies.

A Appendix

Proof of Theorem 1: To prove the theorem we check
which systems parameters Λ0, Sg, S, C, σ2 are s.t.

Λd = var (b− bd (Sg)) ≤ var (b− b`) = Λ` . (A.1)

Recalling that V (θ) = CΛ0C
T + θI it is immediate to

verify through the matrix inversion lemma that

bd = Λ0C
T
(

Λ0 + σ2

Sg
I
)−1

ȳ

= Λ0C
TV

(
σ2

Sg

)−1 (
Cb+ 1

S

∑S
i=1 νi

)
.

Therefore the variance of distributed estimator is given
by

Λd = Λ0 − 2Λ0C
TV

(
σ2

Sg

)−1

CΛ0+

+Λ0C
TV

(
σ2

Sg

)−1

V

(
σ2

S

)
V

(
σ2

Sg

)−1

CΛ0 .

(A.2)
Similarly, for the local estimator we get

Λ` = Λ0 − Λ0C
TV (σ2)−1CΛ0 . (A.3)

By substituting the previous two equations into (A.1)
and by pre- and post-multiplying by Λ−1

0 , we get

−2V

(
σ2

Sg

)−1

+V

(
σ2

Sg

)−1

V

(
σ2

S

)
V

(
σ2

Sg

)−1

≤ −V
(
σ2
)−1

(A.4)
which guarantees Λd ≤ Λ`. Considering the orthogo-
nal matrix U that diagonalizes CΛCT , i.e., CΛCT =
UDUT , UUT = I, where D = diag(d1, . . . , dS), we ob-
tain V (θ) = U (D + θI)UT . Therefore (A.4) can be
written as

−2U
(
D + σ2

Sg
I
)−1

UT+

+U
(
D + σ2

Sg
I
)−2 (

D + σ2

S I
)
UT ≤

≤ −U
(
D + σ2I

)−1
UT

(A.5)

where we also used the fact that diagonal matrices com-
mute. Being U orthogonal, we have that A ≤ 0 ⇔
UAU−1 ≤ 0, so we can remove all the U ’s from (A.5).
Now all the remaining matrices are diagonal, so the con-
dition is satisfied if and only if the inequalities are valid
component-wise. Therefore, A.1 is equivalent to

−2

dm + σ2

Sg

+
dm + σ2

S(
dm + σ2

Sg

)2 ≤
−1

dm + σ2
m = 1, . . . ,M

(A.6)
that can be rewritten as:

pm (Sg) :=
(
σ2+(1−S)dm

)
S2
g − 2σ2SSg + σ2S ≤0

(A.7)
for allm’s. Let us define ṗm = ∂pm

∂Sg
and p̈m = ∂2pm

∂S2
g
. Now

for all m’s and dm’s we have that pm (0) = σ2S > 0 and
pm (1) = (1− S)

(
dm + σ2

)
< (1− S)σ2 < 0 since we

are assuming there are at least two sensors. Moreover we
also have ṗm (0) = −2σ2S < 0 and ṗm (1) = pm (1) < 0.
This implies that each pm (·) has exactly one root in
(0, 1), referred as S′m, while the other root, referred as
S′′m, can be before 0 or after 1 depending on the sign of
σ2 + (1− S)dm, as depicted in Figure A.1.

Now consider a fixed m. Condition (A.7) is assured for
Sg ∈ [1, Sm), where:

Sm :=

{
+∞ if S′′m < 0

S′′m otherwise.
(A.8)

If we define S := minm Sm, condition (A.4) is now as-
sured for Sg ∈

[
1, S

)
.

If σ2 − (1 − S)dm ≤ 0 for all m, which is equivalent
of saying that σ2 − (1 − S)dmin ≤ 0, where dmin :=
minm dm, then we have that S = +∞. This gives rise to
sufficient condition (12)-(a) of the theorem.
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case σ2 + (1− S) dm < 0

case σ2 + (1− S) dm > 0

Sg

pm (Sg)

S∗1

(1− S)(dm + σ2)

σ2S

S′′
m

Figure A.1. Example of possible parabolas pm (Sg).

Differently, if σ2−(1−S)dmin > 0, letm = argminmdm,
therefore S = S′′m. This point is symmetric to S′m with
respect to the minimum of the parabola S∗, i.e., S′′m =
2S∗ − S′m, where

S∗ = argminSgpm(Sg) =
σ2S

σ2 + (1− S)dmin
>
σ2S

σ2
= S

Since S′m < 1, it follows that S = S′′m > 2S − 1. This
implies that if we restrict Sg ∈ [1, 2S− 1), then (A.4) is
satisfied, and this proves the sufficient condition (12)-(b)
of the theorem. 2

Proof of Theorem 2: Rewriting (8) and (10) as(
1

S
Λ−1

0 +
CTC

σ2

)
bc =

1

S

S∑
i=1

CT yi
σ2

(
1

S
Λ−1

0 +
CTC

σ2

)
bd+

(
1

Sg
− 1

S

)
Λ−1

0 bd =

(
1

S

S∑
i=1

CT yi
σ2

)
and subtracting member to member the previous two
equations, we obtain(

1

S
Λ−1

0 +
CTC

σ2

)
(bc − bd) =

(
1

Sg
− 1

S

)
Λ−1

0 bd

that implies

‖bc − bd‖2
‖bd‖2

≤
∣∣∣∣ 1

Sg
− 1

S

∣∣∣∣
∥∥∥∥∥
(

1

S
Λ−1

0 +
CTC

σ2

)−1

Λ−1
0

∥∥∥∥∥
2

.

Since
∣∣∣∣ 1

Sg
− 1

S

∣∣∣∣ ≤ ( 1

Smin
− 1

Smax

)
(A.9)

and
1

S
Λ−1

0 +
CTC

σ2
≥ 1

Smax
Λ−1

0 (A.10)

we have

‖bc − bd‖2
‖bd‖2

≤
(

1

Smin
− 1

Smax

)∥∥∥∥∥
(

1

Smax
Λ−1

0

)−1

Λ−1
0

∥∥∥∥∥
2

which is equivalent to (13). 2

Proof of Proposition 5: We start noticing that it is
possible to associate with H̆K the restricted kernel K̆
and the relative integral operator LK̆,µ defined respec-
tively by

K̆ (x, x′) :=
∑
e∈I

λeφe (x)φe (x′) (A.11)

and LK̆,µ [g] (x) :=

∫
X
K̆ (x, x′) g (x′) dµ (x′) . (A.12)

Exploiting RKHS theory, see, e.g., [48], one obtains that
H̆K is exactly the image of L

1
2

K̆,µ
(the square root of

LK̆,µ) fed with L2 (µ), i.e., H̆K = L
1
2

K̆,µ

[
L2 (µ)

]
.

Define f̂γ := arg min
f∈H̆K

‖f − fµ‖2µ + γ ‖f‖2K (A.13)

and notice that

f̂γ = arg min
f∈H̆K

∥∥∥f − f H̆Kµ

∥∥∥2

µ
+ γ ‖f‖2K . (A.14)

In addition, it holds that∥∥∥f̂S − fµ∥∥∥
µ
≤
∥∥∥f̂S − f̂γ∥∥∥

µ
+
∥∥∥f̂γ − fµ∥∥∥

µ

≤
∥∥∥f̂S − f̂γ∥∥∥

µ
+
∥∥∥f̂γ − f H̆Kµ

∥∥∥
µ

+
∥∥∥f H̆⊥

K
µ

∥∥∥
µ
.

(A.15)
Using theorem 5 in [50], we know that if (26) holds, one
has ∥∥∥f̂S − f̂γ∥∥∥

µ
≤ 12K Y log

(
4
δ

)
√
γS

. (A.16)

In addition, exploiting theorem 3 in [51] and the defini-
tion of LK̆,µ, it is easy to obtain that, with confidence
1− δ, one has∥∥∥f̂γ − f H̆Kµ

∥∥∥
µ
≤ √γ

∥∥∥L− 1
2

K̆,µ

[
f H̆Kµ

]∥∥∥
µ

=
√
γ
∥∥∥f H̆Kµ

∥∥∥
K
.

(A.17)
where the last equality exploits H̆K = L

1
2

K̆,µ

[
L2 (µ)

]
and the fact that L

1
2

K̆,µ
is an isometric map. The

proposition is then proved after simple computations
once (A.16), (A.17) and (26) are substituted into (A.15).
2

Proof of Proposition 9:

Notice that

‖fc − fd‖µ
‖fd‖µ

=
‖bc − bd‖2
‖bd‖2

≤ ‖bc − br‖2‖bd‖2
+
‖br − bd‖2
‖bd‖2

(A.18)
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thus to prove (60) and (61) it is sufficient to character-
ize ‖br − bd‖2/‖bd‖2 and ‖bc − br‖2/‖bd‖2, that will be
analyzed separately in the following.

Case ‖br − bd‖2/‖bd‖2: we start rewriting (36) as
V −1
r br = z and (38) as

(
V −1
r + V −1

d − V −1
r

)
bd = z.

Subtracting the latter to the former we obtain

br − bd = Vr
(
V −1
d − V −1

r

)
bd (A.19)

from which it immediately follows that

‖bd − br‖2
‖bd‖2

=

∥∥Vr (V −1
d − V −1

r

)
bd
∥∥

2

‖bd‖2
. (A.20)

Defining then UC and US by means of (62) and (63), it
is immediate to check that V −1

d − V −1
r = US + UC ,

i.e., 10 ‖bd − br‖2
‖bd‖2

=
‖VrUSbd + VrUCbd‖2

‖bd‖2
. (A.21)

Letting d|dr| :=
‖VrUSbd‖2
‖bd‖2

+
‖VrUCbd‖2
‖bd‖2

(A.22)

we notice that d|dr| is a random variable since Vr and
UC are random operators. It is then clear that charac-
terizing d|dr| corresponds to characterize the relative er-
ror between br and bd. Conditional on z and rave, bd is
known while the posterior density of the input locations
virtually does not vary. This holds in view of the deter-
ministic nature of fµ, and of the fact that the knowledge
of rave provides a negligible information on the locations
visited by the nodes. For this reason 11 , up to Monte-
Carlo errors d∗|dr|,ave and d∗|dr|,var are approximations of
E
[
d|dr|

]
and var

(
d|dr|

)
, respectively.

Now, we prove that the probability density of the ran-
dom variable d|dr| conditioned on z and rave has compact
support. In fact it is immediate to check that

0 ≤ Vr ≤
(

1

Smax
diag

(
γ

λe

))−1

and UC ≤ I .
(A.23)

Moreover, the rank of
(
CEi
)T
CEi is one, thus if ρ (A)

indicates the spectral radius of A it follows that

ρ
((
CEi
)T
CEi

)
= ρ

(
CEi

(
CEi
)T)

=
∥∥CEi ∥∥2

2
. (A.24)

11 Here and in the following, committing a little abuse of
notation we drop indications about the fact that expectations
and variances are actually conditioned on z and rave.

Exploiting now the continuity of eigenfunctions on the
compact X we have that

∥∥CEi ∥∥2

2
≤ E · sup

x∈X , e=1,...,E
|φe (x)|2 =: γa < +∞ (A.25)

thus UC ≥ −
1

S

S∑
i=1

(
CEi
)T
CEi ≥ −γaI . (A.26)

From (A.22), (A.23) and (A.26) it then follows that

0 ≤ d|dr| ≤

∥∥∥Smaxdiag
(
λe
γ

)
USbd

∥∥∥
2

‖bd‖2
+

+

∥∥∥Smaxdiag
(
λe
γ

)
max

(
1,
√
γa
)
bd

∥∥∥
2

‖bd‖2
(A.27)

that proves that the support of the density of d|dr| is
compact.

From (A.27) it follows that var
(
d|dr|

)
< +∞, and this

allows us to use Cantelli’s inequality, obtaining

P

[
d|dr| − E

[
d|dr|

]
≥
√(

1

δ
− 1

)
var
(
d|dr|

)]
≤ δ .

(A.28)
Rewriting this as

P

[
d|dr| ≤ E

(
d|dr|

)
+

√(
1

δ
− 1

)
var
(
d|dr|

)]
≥ 1− δ ,

(A.29)
considering that d|dr| ≥ ‖fr−fd‖2

‖fd‖2
, it follows that (60)

holds up to Monte Carlo approximations.

Case ‖bc − br‖2/‖bd‖2: rewriting (36) as

(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)
br+

+

(
S∑
i=1

(
CEi
)T
CEi −

S∑
i=1

CTi Ci

)
br =

=

S∑
i=1

CTi yi −
S∑
i=1

(
C
\E
i

)T
yi

(A.30)

and (33) as(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)
bc =

S∑
i=1

CTi yi (A.31)
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after subtracting (A.31) to (A.30), we obtain(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)
(bc − br) =

=

(
S∑
i=1

(
CEi
)T
CEi −

S∑
i=1

CTi Ci

)
br +

S∑
i=1

(
C
\E
i

)T
yi .

(A.32)
Substituting now each Ci in the right side of (A.32) with
CEi +C

\E
i , exploiting the fact that C\Ei br = 0 (where 0

is in R∞), and properly collecting the various terms, we
obtain

bc − br =(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)−1 S∑
i=1

(
C
\E
i

)T
(yi − Cibr) .

(A.33)
Since diag

(
γ
λe

)
+
∑S
i=1 C

T
i Ci ≥ diag

(
γ
λe

)
(in a matri-

cial positive definite sense), we obtain

‖bc − br‖2 ≤
S∑
i=1

∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T
(yi − Cibr)

∥∥∥∥
2

.

(A.34)

Rewriting yi−Cibr as yi−CEi bd+CEi bd−CEi br and using
definitions (51), (54) and (A.21) it follows immediately
that

‖bc − br‖2
‖bd‖2

≤
S∑
i=1

∥∥∥∥diag
(
λe
γ

)(
C
\E
i

)T
(yi − Cibd)

∥∥∥∥
2

‖bd‖2

+

S∑
i=1

∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T
CEi

∥∥∥∥
2

‖br − bd‖2
‖bd‖2

≤ Smaxrave +
‖br − bd‖2
‖bd‖2

Smaxsave .

(A.35)

Recalling now (A.18), it immediately follows that

‖bc − bd‖2
‖bd‖2

≤ Smaxrave +
‖br − bd‖2
‖bd‖2

(1 + Smaxsave)

(A.36)
and thus that if (60) holds, then also (61) does. 2
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