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Abstract

This paper considers a variation of the 17th century problem commonly known as the Newton-Pepys

problem, or the John Smith’s problem. We provide its solution and interpret the result in terms of

maximum likelihood estimation. In addition, we illustrate the practical relevance of these findings

for solving size-estimation problems, and in particular for determining the number of agents in a

wireless sensor network.
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1. Introduction

In November and December 1693, Samuel Pepys asked, with some letters to Isaac Newton, a

question involving gambling (Turnbull, 1961, pp. 293–303), (Pepys, 1929, Vol. 1, pp. 72–94). The

question, after a slight reformulation, was which of the following events is most likely to happen:

1. at least one “6” appears when six fair dice are tossed independently;

2. at least two “6”s appear when twelve fair dice are tossed independently;

3. at least three “6”s appears when eighteen fair dice are tossed independently.

Originally posed by a colleague of Pepys, named John Smith, and collected in the famous and

posthumously published Pepys’ diaries, the question is described from a mathematical point of
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view by several papers1, e.g., David (1957); Rubin and Evans (1961); Rubin and Schell (1960).

Here we consider a variation of a generalized version of this problem and then show how it can be

used to solve modern size-estimation problems.

2. The generalized Newton-Pepys problem and the solutions known from the literature

Let the experiment consist in throwing n non-necessarily fair dice, each with a given number of

faces and with probabilities that are uniform among the dice. Let p denote the probability that a

single die will select a certain face when thrown. The number of faces of the dice and which face

should be selected are irrelevant for our results. Let r be the random variable “total number of

dice that selected the considered face”. Let pr [r ≥ k ; n, p] be the probability of having at least k

correct selections when throwing exactly n dice.

The following question generalizes the original Newton-Pepys problem: let ν1, ν2 ∈ N+, ν1 ≤ ν2.

Is pr [r ≥ ν1k ; ν1n, p] not smaller than pr [r ≥ ν2k ; ν2n, p] for all n, p, k? (1)

The original Newton-Pepys problem is a specific instance of (1), since it can be translated into

“is pr [r ≥ 1 ; 6, 1/6] ≥ pr [r ≥ 2 ; 12, 1/6] ≥ pr [r ≥ 3 ; 18, 1/6]?”.

Answers to the newly posed problem depend on the particular instances of k, n and p. As

noticed in Rubin and Evans (1961), in fact, between pr [r ≥ ν1k ; ν1n, p] and pr [r ≥ ν2k ; ν2n, p]

there are no uniform relationships in k, n and p, and the former may be bigger or smaller than the

latter depending on the particular instance. E.g.,

0.75 = pr [r ≥ 1 ; 2, 0.5] > pr [r ≥ 2 ; 4, 0.5] = 0.6875

0.875 = pr [r ≥ 1 ; 3, 0.5] < pr [r ≥ 2 ; 6, 0.5] = 0.8906...
(2)

Nonetheless, we can find results on particular scenarios from Chaundy and Bullard (1960), as

listed below.

Proposition 1. If k1, k2, n ∈ N+ and k1 < k2 then

pr

[
r ≥ k1 ; k1n,

1

n

]
> pr

[
r ≥ k2 ; k2n,

1

n

]
. (3)

1As an hystorical note, Newton’s answer was analytically correct despite the underlying logical motivations were

wrong, see Stigler (2006).
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Notice that the above proposition solves the Newton-Pepys problem, showing that the first of

the three scenarios mentioned in the Introduction is the most likely event. The following result also

holds.

Proposition 2. If k, n1, n2 ∈ N+ and n1 < n2 then

pr

[
r ≥ k ; kn1,

1

n1

]
> pr

[
r ≥ k ; kn2,

1

n2

]
. (4)

3. A variation of the Newton-Pepys problem and its solution

The following problem is a variation of that contained in Section 2: let ν1, ν2 ∈ N+, ν1 ≤ ν2.

Is pr [r = ν1k ; ν1n, p] not smaller than pr [r = ν2k ; ν2n, p] for all n, p? (5)

This question is different from its ancestor in Section 1. The latter, in fact, under this scenario

would become which of the following events is most likely to happen:

1. exactly one “6” appears when six fair dice are tossed independently;

2. exactly two “6”s appear when twelve fair dice are tossed independently;

3. exactly three “6”s appears when eighteen fair dice are tossed independently.

However, differently from (1), (5) has always a positive answer as stated below.

Proposition 3. If ν1, ν2, n, k ∈ N+, ν1 ≤ ν2, k ≤ n and p ∈ [0, 1] then

pr [r = ν1k ; ν1n, p] ≥ pr [r = ν2k ; ν2n, p] . (6)

Proof. Equivalences

pr [r = ν1k ; ν1n, p] =

(
ν1n

ν1k

)
pν1k(1− p)ν1(n−k)

pr [r = ν2k ; ν2n, p] =

(
ν2n

ν2k

)
pν2k(1− p)ν2(n−k)
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imply that (6) can be rewritten as(
ν2n

ν2k

)
(
ν1n

ν1k

)p(ν2−ν1)k(1− p)(ν2−ν1)(n−k) ≤ 1 .

It is straightforward to check that p(ν2−ν1)k(1− p)(ν2−ν1)(n−k) is concave for p ∈ [0, 1]. Thus from

∂

∂p

(
p(ν2−ν1)k(1− p)(ν2−ν1)(n−k)

)
=

= (ν2 − ν1)p(ν2−ν1)k−1(1− p)(ν2−ν1)(n−k)−1(k − np)
(7)

we obtain

p(ν2−ν1)k(1− p)(ν2−ν1)(n−k) ≤
(
k

n

)(ν2−ν1)k (n− k
n

)(ν2−ν1)(n−k)

and this implies that the condition for (6) to hold is(
ν2n

ν2k

)
(
ν1n

ν1k

) (k
n

)(ν2−ν1)k (n− k
n

)(ν2−ν1)(n−k)

≤ 1 . (8)

Considering that (
ν2n

ν2k

)
(
ν1n

ν1k

) =
(ν2n)!

(ν1n)!

(ν1k)!

(ν2k)!

(ν1(n− k))!
(ν2(n− k))!

=
a

b · c
=

d

e · f

with

b := (ν2k) · (ν2k − 1) · . . . · (ν1k + 1) (9)

c :=
(
ν2(n− k)

)
·
(
ν2(n− k)− 1

)
· . . . · (ν1(n− k) + 1) (10)

a := (ν2n) · (ν2n− 1) · . . . · (ν1n+ 1) (11)

and

e := (k) ·
(
k − 1

ν2

)
· . . . ·

(
k − (ν2 − ν1)k − 1

ν2

)
f := (n− k) ·

(
n− k − 1

ν2

)
· . . . ·

(
n− k − (ν2 − ν1)(n− k)− 1

ν2

)
d := (n) ·

(
n− 1

ν2

)
· . . . ·

(
n− (ν2 − ν1)n− 1

ν2

)
.
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We notice that b, e are the product of (ν2 − ν1)k terms, c, f are the product of (ν2 − ν1)(n − k)

terms, and a, d are the product of (ν2 − ν1)n terms. We can thus rewrite condition (8) as

k(ν2−ν1)k

e
· (n− k)

(ν2−ν1)(n−k)

f
≤ n(ν2−ν1)n

d

or, equivalently, as(ν2−ν1)k∏
i=1

k

k − i−1
ν2

 ·
(ν2−ν1)(n−k)∏

j=1

(n− k)
(n− k)− j−1

ν2

 ≤
(ν2−ν1)n∏

`=1

n

n− `−1
ν2

 . (12)

Remarkably, the inequality before can be proved obtaining a much stronger result involving terms-

by-terms inequalities. More precisely, a sufficient condition for (12) to hold is that, assuming that

both sides are sorted, each `-th term in the right-hand-side is not smaller than ` terms in the

left-hand-side. Then, considering the inequalities

k

k − i−1
ν2

≤ n

n− `−1
ν2

i ∈ {1, . . . , (ν2 − ν1)k} (13)

(n− k)
(n− k)− j−1

ν2

≤ n

n− `−1
ν2

j ∈ {1, . . . , (ν2 − ν1)(n− k)} , (14)

a sufficient condition for (12) is that for every ` ∈ {1, . . . , (ν2 − ν1)n} the number of i’s satisfy-

ing (13) plus the number of j’s satisfying (14) has to be at least `. It is convenient to rewrite (13)

and (14) as

i ≤ k

n
(`− 1) + 1 i ∈ {1, . . . , (ν2 − ν1)k} (15)

j ≤ (n− k)
n

(`− 1) + 1 j ∈ {1, . . . , (ν2 − ν1)(n− k)} . (16)

If b·c denotes the floor operator, the sum of the number of i’s satisfying (15) and the number of j’s

satisfying (16) is thus given by⌊
k

n
(`− 1) + 1

⌋
+

⌊
(n− k)
n

(`− 1) + 1

⌋
.

We eventually conclude that (6) is satisfied if⌊
k

n
(`− 1) + 1

⌋
+

⌊
(n− k)
n

(`− 1) + 1

⌋
≥ ` ∀` ∈ {1, . . . , (ν2 − ν1)n} . (17)

To prove (17), we notice that, since if x, y ∈ R then bxc+ byc ≥ bx+ yc − 1,⌊
k

n
(`− 1) + 1

⌋
+

⌊
(n− k)
n

(`− 1) + 1

⌋
≥

≥
⌊
k

n
(`− 1) + 1 +

(n− k)
n

(`− 1) + 1

⌋
− 1 .

5



Exploiting now the fact that if x ∈ R, y ∈ N then bxc+ y = bxc+ byc = bx+ yc, we can conclude

that (17) holds true for all ` ∈ N+ since⌊
k

n
(`− 1) + 1

⌋
+

⌊
(n− k)
n

(`− 1) + 1

⌋
≥

≥
⌊
k

n
(`− 1) + 1 +

(n− k)
n

(`− 1)

⌋
= b`c = ` .

This thus proves the result.

It is worth noticing that the proof of Proposition 3 is not based on induction concepts and is

essentially different from the proofs of Propositions 1 and 2.

4. Practical implications related to size-estimation problems

Assume that a certain experiment, run an unknown number of times, had a success fraction f =

k/n with k, number of successes, and n, number of runs, both unknown. Assume that k/n = k̂/n̂,

with k̂ and n̂ coprime. Proposition 3 implies that pr
[
r = k̂ ; n̂, p

]
≥ pr

[
r = 2k̂ ; 2n̂, p

]
≥ . . ., for

all possible p’s. In other words, the numerator and denominator of the coprime representation of f

are the Maximum Likelihood (ML) estimates of the number of successes and of trials, respectively,

irrespective of the actual probability p of success of the single trial. This is due to the fact that, the

larger n is, the more the binomial distributions are spread out, so that the individual probabilities

are smaller. An alternative interpretation is in terms of Ockham’s razor: the simplest hypothesis,

i.e., the one invoking the fewest trials, is also the most likely one.

Remarkably, this fact, answering a variation of a so ancient question, has interesting implications

in modern problems. In particular, let us now focus on distributed estimation of the size of a wireless

sensor network Akyildiz et al. (2002): the aim is to determine the number of collaborating agents,

which is a useful information for maintenance and organization purposes. Now, let n denote the

unknown number of agents. We propose a strategy to estimate n that can be used in anonymous

networks, i.e., networks where agents are not assured to have unique IDs or are not allowed to

disclose them due to privacy reasons. This problem is intricate in view of the following impossibility

result:

Theorem 4 (Theorem 9 in Cidon and Shavitt (1995)). There exists no algorithm that is able to

compute the size of a generic network of anonymous agents that terminates with the correct result
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for every finite execution with probability one, and that has a bounded average bit complexity (i.e.,

s.t. the average number of bits used by the algorithm is bounded).

The aim is then to design probabilistic algorithms with the smallest (but unavoidably non-null)

probability of error.

4.1. Size-estimation under infinite-precision arithmetics

Proposition 3 suggests the following strategy: let each agent i = 1, . . . , n locally draw a sin-

gle yi ∈ {0, 1} from independent Bernoulli random variables of parameter p. Under the stated

assumptions, f =

n∑
i=1

yi/n = k/n is the fraction of ones generated by the various agents.

Let then the agents distributedly compute the exact f = k/n as follows2: every i = 1, . . . , n has

a local variable fi(τ) (τ denotes time) initialized as fi(0) = yi. Then every second every i = 1, . . . , n

randomly selects one of its neighbors (say, j). Thus both i and j average their local variables, i.e.,

let fi(τ +1) = 1
2

(
fi(τ)+fj(τ)

)
, fj(τ +1) = 1

2

(
fi(τ)+fj(τ)

)
. With this scheme limτ→+∞ fi(τ) = f

with probability 1, exponentially in time and for every i = 1, . . . , n (Fagnani and Zampieri, 2008,

Example 3.4).

Let us assume for now that each agent has eventually computed the asymptotic exact f =

k/n = k̂/n̂ with k̂ and n̂ coprime (relaxations of this hypothesis will be analyzed consequently). As

noticed at the beginning of section 4, n̂ is the ML estimate of n. Remarkably, n is a multiple of n̂

by construction , implying n̂ ≤ n. Moreover n̂ is correct, i.e., n̂ = n, if and only if k is a totative of

n, i.e., if k is coprime with n. The number of k’s leading to correct estimates is thus equal to the

number of totatives of n, known as the Euler’s φ-function φ(n) Lehmer (1955).

To increase the statistical performance of the estimator we can let the agents perform M exper-

iments in parallel, i.e., extract yi,m ∈ {0, 1}, i = 1, . . . , n, m = 1, . . . ,M still from i.i.d. Bernoulli

random variables, then compute fm = 1
n

∑n
i=1 yi,m as above, and eventually compute n̂m from fm

as above. Let then LCM(·) indicate the least common multiple operator. Since n is a common mul-

tiple of all the n̂m, n ≥ LCM(n̂1, . . . , n̂M ). Thanks to the monotonicity of the likelihoods presented

2This scheme is the symmetric gossip version of the average consensus Xiao et al. (2007) Garin and Schenato

(2011), a famous distributed algorithm tailored for the computation of averages. We refer to it just for sake of clarity

and because of its little coordination requirements and simplicity. The following results indeed do not depend on

how f = k/n is actually computed.

7



in Proposition 3, the following result holds.

Proposition 5. The ML estimator for n given f1, . . . , fM is

n̂ = LCM (n̂1, . . . , n̂M ) . (18)

Moreover,

pr [n 6= n̂] ≤
M∏
m=1

pr [n 6= n̂m] =
(
pr [n 6= n̂1]

)M (19)

thus the probability of error decays exponentially in M , uniformly on the Bernoulli parameter p.

Proof. • ML property: assume the knowledge of just a single fm. Since

pr [fm ; n] =

(
n

nfm

)
pnfm(1− p)n−nfm ,

the likelihood pr [fm ; n] is non-null only for n ∈ Im := {n̂m, 2n̂m, 3n̂m, . . .}. Moreover, since the

yi,m’s are independent,

pr [f1, . . . , fM ; n] =

M∏
m=1

pr [fm ; n] .

This eventually means pr [f1, . . . , fM ; n] to be non-null only for n ∈ I := ∩Mm=1Im.

Now, Proposition 3 implies pr [fm ; n] restricted to Im to be non increasing, that implies

pr [f1, . . . , fM ; n] restricted to I to be non increasing. This eventually implies that the maxi-

mum likelihood estimator of n is n̂ = LCM (n̂1, . . . , n̂M ) = min(I).

• Equation (19): consider that the single n̂m is obtained reducing fm = km/n to a coprime

fraction k̂/n̂. This implies that n̂m is a factor of n and thus, by construction, that each n̂m cannot

overestimate n. Consider then that n̂ is obtained as the least common multiple of factors of n. Since

the LCM of factors of a number cannot be bigger than the number itself, again by construction n̂

cannot overestimate n.

Consider then that if n 6= n̂ then necessarily n 6= n̂1, . . . , n 6= n̂M . (The contrary is not true,

in the sense that but that n 6= n̂1, . . . , n 6= n̂M does not imply n 6= n̂. E.g., M = 2, n = 6, n̂1 =

3, n̂2 = 2.) This thus directly implies that pr [n 6= n̂] ≤ pr [n 6= n̂1, . . . , n 6= n̂M ], that leads to (19)

since the various n̂m’s are i.i.d.

Since the error probability pr [n 6= n̂1] is a function of p, one might desire to find the optimal

value p. A possible direction is to follow the classical Fischerian approach of selecting the p that
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minimizes the worst probability of error pr [n 6= n̂] over a suitable set of possible n’s. It is nonetheless

easy to verify through simple numerical experiments that for M = 1 the choice is not particularly

critical and that, for any p ∈ [0.25, 0.75] and for any n ≤ 1000 then pr [n 6= n̂1] ≤ 0.85. We therefore

choose p = 0.5 in the simulations in next session. According to Proposition 5 where p = 0.5 and

n ≤ 1000, then pr [n 6= n̂] ≤ (0.85)
M . Hence the strategy leads to an estimator that, increasing the

number of independent trials M , achieves any desirable level of confidence, with the probability of

error decaying to zero exponentially fast with M .

4.2. Implementation under finite-precision arithmetics

In real devices the fi(τ)’s must be represented using a finite number of bits b. In other words,

fi(τ) ∈ F ⊂ [0, 1] with F a finite set of 2b points in [0, 1]. Importantly, some fractions k/n might

not be in F . E.g., Figure 1 represents a particular F for b = 6. In this case 1/4 /∈ F .

To implement the strategy proposed in Section 4.1 in this more realistic scenario we then notice

the following facts:

• assuming the knowledge of an upper bound on n, say nmax, the set of potential fractions

KN := {f = k/n | n = 1, . . . , nmax, k = 0, . . . , n} is finite. This implies that the various ele-

ments of F can be mapped onto the closest potential fraction k/n ∈ KN , and subsequently

the fraction k/n onto its denominator. This operation is represented in Figure 1 by means of

gray rectangles;

• if the elements of F are equally spaced then the previous operations fi(τ+1) = 1
2

(
fi(τ)+fj(τ)

)
in F can be refined so that every fi(τ)’s converges in finite time to f̃ = f + e 6= f , with e an

error smaller than the spacing of the elements in F Carli et al. (2010).

Since the smallest distance between the elements in KN is
1

nmax(nmax − 1)
,we implicitly obtain

that if
1

2b
<

1

2nmax(nmax − 1)
then f̃ and f are mapped to the same fraction k/n. I.e., if the number

of bits is sufficiently high then the computation of n̂ is insensitive to the presented finite-precision

arithmetics issues, that means that (19) still holds.

4.3. Comparisons with random-walks based estimators

The performance of the proposed estimator are intrinsically different from the ones of typical

probabilistic counting and anonymous size-estimation techniques, e.g., Flajolet and Martin (1985);
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Figure 1: Set of the representable values F (64 diamonds over the x-axis, corresponding to b = 6) and of the plausible

fractions KN (stems), among with their corresponding estimates n̂ for nmax = 5. The gray rectangles indicate how

each element of F is associated to a certain estimate n̂.

Massouliè et al. (2006); Sirken and Shimizu (1999). The latters, in fact, fuse independent trials by

averaging the single outcomes, and this leads to an error variance that decays with the inverse of

the number of trials, i.e. as 1/M . Differently, the estimator proposed in Proposition 5 performs

LCM operations on the single outcomes, and this leads to error probabilities decaying exponentially

with the number of trials M , i.e., as αM , α < 1.

In this section we specifically compare our strategy with one of the most used strategies, the

class of the so called random-walks based estimators (see, e.g., Massouliè et al. (2006)). The

inference mechanism works as follows: a querying node (e.g., the black one in Figure 2(a)) initiates

the procedure generating M “batons”. Then for each baton the querier randomly selects (with

replacement) one of his neighbors, then add a mark to the baton and pass it to the selected neighbor

– as in a relay race. The receiver, in its turn, perform the same operation: randomly select one of

his neighbors, add an other mark to the baton and then pass it to the selected neighbor, and so on.

Every baton thus randomly travels through the network, until it returns to the querier. The latter

can then infer the network size by combining how many times each baton has been passed before

returning to the original position. With this strategy the error variance decays as 1/M .

Figure 2(b) shows a typical realization of the temporal evolution of the estimates given by the

random walk strategy applied to the communication network shown in the first panel (M = 10).

Here the querying node is the black one, and the x-axis measures how many times the batons have

been propagated from a node to another one. Figure 2(c) instead shows a typical realization of the

estimates obtained by the black node when applying our novel strategy to the same communication

network (M = 10, p = 0.5, nmax = 50, each scalar represented with 16 bits). The x-axis unit is

the number of communications performed by the black node. Importantly, before reaching their
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final values the various fi,m(τ)’s may visit several different elements of F . They thus might be

temporarily associated to fractions in KN whose denominators are not factors of n. E.g., consider

a network of n = 20 agents where, at time τ = 100, fi,m(100) = 1/8. This implies that at τ = 100

agent i sets n̂m = 8 – not a factor of n = 20. Similarly, even for M > 1, it may thus happen that

n̂ = LCM (n̂1, . . . , n̂M ) > nmax. However, if the number of bits is sufficiently high, then this effect

is just temporary since eventually fi,m(τ) will converge to the correct fm and thus be associated

to a correct factor of n. The temporary case n̂ > nmax has then been managed in our simulations

by arbitrarily setting the unreliable estimates to zero.

(a)

50 100 150
0

10

20

30

time [comm. steps]

n̂

(b)

200 400 600 800
0

10

20

30

time [comm. steps]
n̂

(c)

Figure 2: 2(a): communication network (n = 20, black node = querying node). 2(b): trajectory of estimates for

random walks, M = 10. 2(c): trajectory of estimates for Proposition 5, M = 10, p = 0.5.

We notice the following differences between the two schemes. When using random walks, the

estimates are computed by just one agent, are updated when the various seeds return to the querier

and are monotonically increasing in time. When using our scheme, estimates are computed in

parallel every time an agent communicates and there is no monotonicity. More importantly, errors

variances of the two estimators scale differently with M : for random walks strategies it decays

polynomially with M while for our strategy, thanks to Proposition 5, it decays exponentially.

To further illustrate these effects, we have performed 100 independent experiments, each running

the two previously considered strategies using again the communication network of Figure 2(a),

M = 10 and p = 0.5. The empirical spread of the estimation errors is plotted in Figure 3(a), while

the spread of the convergence times is shown in Figure 3(b). The stopping criterion in our strategy

is: stop if the current estimate is valid and has not changed in the last 10 steps. Remarkably, our
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algorithm allows the agents to estimate perfectly the network size in all the 100 experiments at the

price of a longer convergence time. This also indicates that the upper bound (19) (in this case,

0.8510 ≈ 0.2) can be very conservative.

Bernoulli

Random walks

−60 −40 −20 0 20
n− n̂

(a)

Bernoulli

Random walks

0 500 1,000
communication steps

(b)

Figure 3: 3(a): estimation errors. 3(b): convergence times.

5. Conclusions

We have illustrated and solved a variation of the historical Newton-Pepys problem. In addition,

we have shown the connection between this result and ML size-estimation problems, deriving a

distributed strategy to estimate the number of agents composing an anonymous network. Despite

the fact that the derived algorithm has desirable theoretical and practical qualities like accuracy

and simplicity, its actual implementation poses interesting future research directions that we plan

to investigate, e.g., related to assessing its sensitivity to round-off errors.
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