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ABSTRACT1

This work considers hypothesis testing in networked sys-2

tems under severe lack of prior knowledge. In previous3

work we derived a centralized Uniformly Most Powerful4

Invariant (UMPI) approach to testing unknown inputs5

in unknown Linear Time Invariant (LTI) networked dy-6

namics subject to unknown Gaussian noise. The de-7

tector was also shown to have Constant False Alarm8

Rate (CFAR) properties. Nonetheless, in large-scale9

systems, centralized testing may be infeasible or unde-10

sireable. Thus, we develop a distributed testing version11

of our previous work that utilizes a statistic that is maxi-12

mally invariant to the unknown parameters and the non-13

local/neighboring measurements. Similar to the cen-14

tralized approach, the distributed test is shown to have15

CFAR properties and to have performance that asymp-16

totically approaches that of the centralized test. Simula-17

tion results illustrate that the performance of the distri-18

buted approach suffers marginal performance degrada-19

tion in comparison to the centralized approach. Insight20

to this phenomena is provided through a discussion.21
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tems, time invariant systems, networked systems 24

1. INTRODUCTION 25
26

Driven by the possibility of augmenting the flexibil- 27

ity and the reconfiguration capabilities of very complex 28

systems, in many applications the current trend is to ex- 29

ploit multitudes of sensors and actuators, as in environ- 30

mental monitoring [1], building energy management [2, 31

3], wireless communications [4] and power grids [5, 6]. 32

The trend, however, comes with drawbacks: the high 33

number of devices induces an increased possibility of 34

faults with potentially disruptive ripple effects, like ex- 35

tended blackouts in power systems. There is thus a 36

factual need for distributed fault detection algorithms. 37

We then consider that in every system, including dy- 38

namically networked ones such as the smart grid and 39

building thermal dynamics, fault detection algorithms 40

undoubtedly benefit from the knowledge of accurate mod- 41

els [6, 1, 3]. However, obtaining accurate models is often 42

difficult or unrealistic due to the complexity of the sys- 43

tem itself or the effects of environmental disturbances. 44

For instance, in the smart grid security domain, it is 45

common to assume the admittance of a transmission 46

line is known [6]; however, the power line admittance is 47

known to change with the temperature, humidity, and 48

power flow, which leads to inaccurate models. Similarly, 49

in building thermal dynamic modeling, even the sim- 50

plest first-order heat equation model requires the knowl- 51

edge of inter air-mass interactions, which change with 52

the state of windows and doors (open or closed), the 53

prevailing winds, the temperature, and the humidity. 54

Thus, it is necessary to design fault detection schemes 55

robust to these complex interactions. 56

If one were to consider large-scale networked systems, 57

centralized approaches which apply model identification 58

techniques in cascade with hypothesis testing may not 59

be feasible. Similarly, when there are limited measure- 60

ments, these identification and testing approaches tend 61

to yield unexpected results, primarily due to the lack of 62

information suitable for accurate parameter identifica- 63

tion, see, e.g., [7, Example 1, page 46]. In this situation, 64



distributed testing approaches that are designed to be1

invariant to the actual model parameters can result in2

better performance. In this paper we thus analyze if it3

is possible to derive distributed decision rules that do4

not depend on the model parameters and that are, in5

some sense to be defined, optimal with respect to the6

available information.7

Literature review. Centralized classical hypothesis test-8

ing approaches usually exploit Generalized Likelihood9

Ratio (GLR) strategies, relying on obtaining Maximum10

Likelihood (ML) estimates of the unknown parameters11

under the various hypotheses and then testing their like-12

lihood ratios. Maximally Invariant (MI) tests [8, Sec. 4.8]13

instead perform some additional preliminary operations14

so that the test is not influenced by the nuisance pa-15

rameters. If MI tests are Uniformly Most Powerful In-16

variant (UMPI), then when the Signal to Noise Ra-17

tio (SNR) tends to infinity (e.g., when the number of18

measurements approaches infinity, see [9]), GLR and19

UMPI strategies are asymptotically equivalent. When20

small datasets are available, nonetheless, MI tests can21

outperform GLR approaches [10].22

Invariant strategies have been used in several appli-23

cations, like detection of structural changes in linear24

regression models [11] or in spectral properties of dis-25

turbances [12]. The literature focuses mainly on finding26

invariant methods in linear models with unknown or27

partially known covariance matrices [13, 14, 15, 16, 17],28

with efforts specially in finding tests that exploit maxi-29

mally invariant statistics and that have Constant False30

Alarm Rate (CFAR) properties.31

Recently, there has been substantial research in di-32

stributed GLR tests for networked systems, e.g., in en-33

vironmental monitoring, smart grid fault detection, and34

building HVAC failure detection and diagnostics ap-35

plications. While all these approaches yield asyptoti-36

cally accurate results as the number of measurements in-37

creases, their performance under limited measurements38

is sporadic and unpredictable. This motivates the need39

for distributed testing techniques which have predictable40

performance regardless of the number of measurements.41

In our previous work [18], we considered the central-42

ized detection of unknown inputs in unknown dynami-43

cally networked Linear Time Invariant (LTI) Gaussian44

systems and developed a UMPI test with CFAR prop-45

erties. This work not only showed the existence on a46

UMPI test, but also established an upper bound on the47

performance of any distributed detection scheme.48

Statement of contributions. here we again focus on LTI-49

Gaussian models, but reduce the prior information to50

be the smallest possible. More precisely, we assume the51

knowledge of just the fact that the system dynamics is52

networked, LTI with Gaussian driving noises and, fur- 53

thermore, a weak knowledge on the structure of the in- 54

put fault. We thus develop a distributed CFAR test 55

that is invariant to the unknown parameters and the 56

non-local/neighboring measurements describing the sys- 57

tem. The distributed test is then numerically evaluated 58

against the centralized test developed in [18] as well as 59

the best case (assuming a known model) and the worst 60

case (assuming no model) scenarios, where it is shown 61

empirically that the distributed test approaches the per- 62

formance of the centralized UMPI test. 63

Structure of the paper. Section 2 reports the needed ba- 64

sic results and definitions on invariant hypothesis test- 65

ing. Section 3 formulates precisely the problem con- 66

sidered. We propose our testing technique along with 67

its statistical characterization in Section 4. Section 5 68

numerically compares the performance of the distribu- 69

ted detector against the performance of the centralized 70

UMPI detector in [18] and strategies endowed with more 71

prior information and no prior information for differ- 72

ent operating points and systems. Finally, Section 6 73

reports some concluding remarks and proposes future 74

extensions. 75

Notation. we use plain lower case italic fonts to indicate 76

scalars or functions with scalar range, bold lower case 77

italic fonts to indicate vectors or functions with vecto- 78

rial range, and plain upper case italic fonts to indicate 79

matrices. We also use ⊗ to denote Kronecker products, 80

and ei,j to denote the elementary vector of dimension 81

i consisting of all zeros with a single unit entry in the 82

j-th position. 83

2. HYPOTHESIS TESTING 84

PRELIMINARIES 85
86

Commiserate with [8], we recall the definitions and 87

methodology employed in designing UMPI tests. Let y 88

be a r.v. with probability density f(y ; d, δ) parametrized 89

in d, δ. We define d to be the set of parameters of in- 90

terest, and thus δ to be the set of nuisance parameters, 91

which induce a transformation group G, i.e., a set of 92

endomorphisms g on the space of the realizations y [8, 93

Sec. 4.8]. This group of transformations partitions the 94

measurement space into equivalence classes (or orbits) 95

where points are considered equal if there exist g, g′ ∈ G 96

mapping the first into the second and vice versa. 97

Definition 1 (Maximally Invariant Statistic [8,
Sec. 4.8]) A statistic T [y] is said to be maximally
invariant w.r.t. a transformation group G if it is:

invariant: T [g(y)] = T [y], ∀g ∈ G

maximal: T [y′] = T [y′′] ⇒ ∃g ∈ G s.t. y′′ = g(y′).



A statistical test, φ, based on an invariant statistic is1

said to be an invariant test:2

Definition 2 (Invariant Test [8, Sec. 4.8]) Let G
be a transformation group, T [y] a statistic and φ(·) a
hypothesis test. φ is said to be invariant w.r.t. G if

φ
(
T [g(y)]

)
= φ

(
T [y]

)
(1)

for every g ∈ G.

The statistical performance of an invariant test φ is3

measured in terms of its size and power, where an in-4

variant test is desired to be Uniformly Most Powerful5

Invariant (UMPI):6

Definition 3 (Uniformly Most Powerful Invari-
ant (UMPI) Test [8, Sec. 4.8]) Let G be a trans-
formation group, T [y] a statistic and φ(·) a test for
deciding between H0 and H1 that is invariant w.r.t. G.
Then φ

(
T [y]

)
is said to be an uniformly most powerful

invariant (UMPI) test of size α if for every competing
invariant test φ′

(
T [y]

)
it holds that

(size) sup
d,δ under H0

Pr
[
φ
(
T [y]

)
= H1

∣∣ d, δ
]
= α;

sup
d,δ under H0

Pr
[
φ′
(
T [y]

)
= H1

∣∣ d, δ
]
≤ α;

(2)

(power) Pr
[
φ
(
T [y]

)
= H1

∣∣ d, δ under H1

]
≥

Pr
[
φ′
(
T [y]

)
= H1

∣∣ d, δ under H1

]
.

(3)

As a remark, thanks to the Karlin-Rubin theorem [8,7

Sec. 4.7, page 124], a scalar maximally invariant statis-8

tic whose likelihood ratio is monotone can be used to9

construct an UMPI test.10

3. PROBLEM FORMULATION11

AND NOTATION12
13

This section introduces a distributed hypothesis test-14

ing problem for deciding whether a signal, driven by15

unknown LTI networked Gaussian dynamics, lies also16

in a given subspace. Specifically, we consider a sys-17

tem of M interconnected nodes for which there exists18

an underlying interconnection graph, G(V, E), between19

the M nodes, where V := {1, . . . ,M} is the vertex set,20

with i ∈ V corresponding to node i, and E ⊆ V × V is21

the edge set of the graph. The undirected edge {i, j} 22

is incident on vertices i and j if nodes i and j share an 23

interconnection, such that the neighborhood of node i, 24

Ni, is defined as 25

Ni :=
{
j ∈ V

∣∣ {i, j} ∈ E
}

(4) 26

The inter-node dynamics are governed by discrete- 27

time LTI-Gaussian dynamics 28

xj(k + 1) = xj(k) +mj

∑

i∈Nj

aji

(
xi(k)− xj(k)

)

+ bjdj(k) + wj(k)

yj(k) = xj(k) + vj(k)

(5) 29

where: 30

• k = 0, . . . , T is the time index (T even for nota- 31

tional simplicity1); 32

• j = 1, . . . ,M is the agent index; 33

• the states xj(k)’s, measurements yj(k)’s and in- 34

puts dj(k)’s are scalar; 35

• mjaji = mjaij ∈ R and bj ∈ R denote respectively 36

the gains between xi(k) and xj(k+1), and between 37

dj(k) and xj(k + 1); 38

• wj(k), vj(k) ∈ R are uncorrelated i.i.d. Gaussian
process noise and measurement noise with moments

E [wj(k)] = χj,w E [vj(k)] = χj,v,

E

[(
wj(k)− wj

)2]
= σ2

j,w E

[(
vj(k)− vj

)2]
= σ2

j,v.

To compact the notation we let, for j = 1, . . . ,M ,

A :=
[
αij

]

αij :=





1−mj

∑

n∈Nj

anj if i = j

mjaij if i ∈ Nj , i 6= j

0 otherwise

B := diag [b1, . . . , bM ]

yj := [yj(0), . . . , yj(T )]
⊤

dj := [dj(0), . . . , dj(T )]
⊤
.

Additionally, we consider the following quantities: let
Nj = {i1, . . . , iJ} be the sorted list of neighbors of agent
j. Then

~αj := [αi1j , . . . , αiJj ]
⊤

~yj(k) := [yi1(k), . . . , yiJ (k)]
⊤

~yj :=
[
yT
i1
, . . . ,yT

iJ

]⊤
,

1For ease of notation and without loss of generality we as-
sume that the available measurements are over a given pe-
riod whose length is fixed ex ante.



i.e., ~yj(k) is the set of the measurements of agent j and1

its neighbors (sorted lexicographically) at time k, while2

~yj is the set of all the measurements of agent j and its3

neighbors (again sorted lexicographically).4

Consider then a specific agent ℓ ∈ {1, . . . ,M}. The5

structure of the input dℓ is assumed to be as follows:6

• uℓ :=
[
uℓ(0), . . . , uℓ(T )

]⊤
is a desired and known7

input signal;8

• s
f
ℓ
:=

[
s
f
ℓ (0), . . . , s

f
ℓ (T )

]⊤
, f = 1, . . . , Nℓ are some

known signals defining the space of signals

span
〈
s1ℓ , . . . , s

Nℓ

ℓ

〉

(with Sℓ :=
[
s1ℓ , . . . , s

Nℓ

ℓ

]
being a shorthand for9

the s
f
ℓ ’s);10

• θℓ ∈ R
Nℓ is an unknown (but constant) signal se-11

lection parameter.12

Then13

dℓ = Sℓθℓ + µℓuℓ (6)14

where the scalar µℓ is an unknown parameter.15

Summarizing, the information owned by agent ℓ is16

either available or unavailable as follows:17

Assumption 4 Available information:

• the time-series measurements ~yℓ

• the local desired input signal uℓ;

• the local nuisance subspace Sℓ;

• the local weight mℓ;

• the fact that the state dynamics are LTI-
Gaussian, constant in time, and with bℓ 6= 0.

Assumption 5 Unavailable information:

• all the time-series measurements but ~yj ;

• all the local desired input signals but uℓ;

• all the local nuisance subspaces but Sℓ;

• all the local weights but mℓ;

• the weights A and B;

• the moments of the process and measurement
noises χj,w, χj,v, σ

2
j,w, σ

2
j,v, j = 1, . . . ,M ;

• the parameters θj and µj ;

• the initial conditions x1(0), . . . , xM (0);

• the input signals d1, . . . ,dM .

We then assume the unknown µℓ to be either 0 or 1 18

and pose the following binary hypothesis testing prob- 19

lem: 20

Assumption 6 Structure of the fault µℓ satisfies
either one of the two following hypotheses:

H0 (null hypothesis): µℓ = 0

H1 (alternative hypothesis): µℓ = 1

In words, both hypotheses assume the actual dℓ to 21

be unknown, since θℓ is unknown, but with a fixed and 22

known functional structure. H1 additionally assumes 23

the presence of a known input uℓ. 24

Our aim is thus: develop a distributed test that consid- 25

ers a specific agent ℓ ∈ {1, . . . ,M}, and decides among 26

the hypotheses H0 vs. H1 in Assumption 6 using only the 27

information in Assumption 4 and, at the same time, be- 28

ing invariant to the unavailable information in Assump- 29

tion 5. 30

We note that the problem formulated in this section 31

is fundamentally different from the problem formulated 32

in [18]. Indeed, the novel test should be computable 33

distributedly and should be invariant also to the non- 34

local measurements (in addition to all the unavailable 35

information in [18]). 36

We thus aim to find a test that detects whether node 37

ℓ has a fault independently of whether a fault exists at 38

any other node j 6= ℓ (fault isolation) and maximizes 39

the probability of detection (power) for any probability 40

of false alarm (size), i.e., we require the detector to be 41

UMPI. Formally, thus, we aim to solve the following: 42



Problem 7

1. find a statistic T
[
~yℓ

]
that satisfies Definition 1

(maximal invariance) w.r.t. the transformation
group induced by nuisance parameters in As-
sumption 5;

2. find a test φ
(
T
[
~yℓ

])
that satisfies Definition 3

(UMPI test) w.r.t. to the class of tests based
on the previously introduced maximal invariant
statistic T

[
~yℓ

]
.

4. DISTRIBUTED INVARIANT TESTING1
2

In this section we solve the previously posed problem3

and develop a distributed UMPI test that uses only local4

and neighboring measurements. The algorithm is based5

on the following novel result, solving the first part of6

Problem 7:7

Theorem 8 A maximally invariant statistic that
solves Problem 7-1 is

T [zℓ] =
z⊤
ℓ Pℓzℓ

1

Nℓ − 1
z⊤
ℓ

(
INℓ

− Pℓ

)
zℓ

(7)

with

zℓ := FℓQyℓ

Pℓ :=
FℓQuℓu

⊤
ℓ Q

⊤F⊤
ℓ

u⊤
ℓ Q

⊤F⊤
ℓ FℓQuℓ

Nℓ :=
k

2
− ‖Nℓ‖0

(8)

and where the exploited quantities satisfy

F⊤
ℓ Fℓ = I k

2

− ~Yℓ(~Y
⊤
ℓ
~Yℓ)

−1~Y ⊤
ℓ

Q = I k
2

⊗ [ 0 1 ]

~Yℓ =




~y⊤ℓ (0) (sfℓ (0))
⊤ 1

~y⊤ℓ (2) (sfℓ (2))
⊤ 1

~y⊤ℓ (4) (sfℓ (4))
⊤ 1

...
...

...

~y⊤ℓ (T ) (sfℓ (T ))
⊤ 1




(9)

Proof. The proof follows a similar flow to the cen-8

tralized test proof in [18]. The proof is omitted due to9

space constraints in this extended abstract. If accepted,10

the final version of this work will include a proof for11

Theorem 8.12

We observe that the maximally invariant statistic in (7) 13

can be equivalently written as a ratio of independent 14

chi-square random variables. This particular ratio is 15

known to follow an F -distribution, which has a mono- 16

tone likelihood ratio [8]. Thus we solve the second part 17

of Problem 7 by applying the Karlin-Rubin theorem, 18

obtaining directly the following: 19

Corollary 9 A distributed UMPI test of size α for
Problem 7-2 is

φℓ(zℓ) =

{
H0 if Tℓ[zℓ] < F−1

1,Nℓ−1
(α)

H1 otherwise.
(10)

where F−1
n,m(α) is the inverse central cumulative F -

distribution of dimensions n and m.

We remark that, w.r.t. the algorithm proposed in [18], 20

test (10) can be performed in parallel and it is invari- 21

ant to the non-local measurements. This comes with a 22

price: the test exploits only about half of the available 23

measurements (either local or from neighbors). The re- 24

maining local and neighbors’ measurements are in fact 25

lost in the attempt of obtaining invariance. Since the 26

dataset is smaller than the one exploited in [18], it is 27

expected that the novel test will perform worse. In the 28

following section we then numerically evaluate this loss. 29

5. NUMERICAL EXAMPLES 30
31

We perform three Monte-Carlo characterizations as 32

follows: 33

1. we fix a desired probability of false alarms α (0.01, 34

0.1 and 0.25); 35

2. we randomly generate 500 stable networked sys- 36

tems of 10 agents like (5) as described in Table 1 37

(i.e., we discarded the unstable realizations); 38

3. for each of the 500 systems (5) we generated ex- 39

actly one realization yj(1), . . . , yj(500), j = 1, . . . , 10; 40

4. for each T = 1, . . . , 500 and each of the 500 sys- 41

tems (5) we executed the following four tests, all 42

with the same desired probability of false alarms 43

α: 44

(a) full information test: assume the perfect knowl- 45

edge of the weights A and B; the moments 46

of the process and measurement noises χj,w, 47

χj,v, σ
2
j,w, σ

2
j,v; the parameters θj ; the initial 48

conditions x1(j) (j = 1, . . . , 10). Then design 49

the Uniformly Most Powerful (UMP) test for 50

testing H0 vs. H1 given all this information; 51



aj , bj ∼ U [−0.5, 0.5] mj ∼ U [1, 2]
χj,w, χj,v ∼ N (0, 1) σ2

j,w, σ
2
j,v ∼ U [0.1, 1]

Table 1: Random extraction mechanisms for the
generation of the systems (5). N indicates Gaus-
sian distributions, U uniform distributions. All
the quantities are extracted independently.

(b) centralized UMPI test: the UMPI test de-1

veloped in [18], which is provided in the ap-2

pendix using the notation introduced within3

this work;4

(c) distributed UMPI test (DUMPI): our test (10);5

(d) no information test: perform a weighted coin6

flip s.t. the desired probability of false alarms7

α is met.8

The outcomes are then summarized in the following9

Figures 1, 2 and 3, that plot for each test and each T10

the average correct detection rate reached over the 50011

considered realizations of system 5.12
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Figure 1: Monte-Carlo characterization of the
detection tests given α = 0.01.
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Figure 2: Monte-Carlo characterization of the
detection tests given α = 0.1. Legend as in Fig-
ure 1.
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Figure 3: Monte-Carlo characterization of the
detection tests given α = 0.25. Legend as in Fig-
ure 1.

From the previous graphics we draw the following con- 13

clusions. Before the number of measurements (propor- 14

tional to T ) passes the threshold T
2
− Nℓ −M + 1 (in- 15

dependent of the chosen α), both the centralized and 16

distributed UMPI tests are equivalent to a coin flip- 17

ping (since the amount of information is insufficient to 18

take meaningful decisions). After that threshold, in- 19

stead, the two test start increasing their correct detec- 20

tion rates (with different speeds, depending on the se- 21

lected probability of false alarms), discerning better and 22

better. Eventually they reach the same performance of 23

the full information-based test, i.e., the best one might 24

desire. We then notice that the difference in the correct 25

detection rates between the centralized and distributed 26

approaches starts small and vanishes quickly. This in- 27

dicates that, from practical purposes, the distributed 28

strategy performs well. The reason for such a simi- 29

lar performance between the centralized and distribu- 30

ted approaches lies in that the centralized appraoch 31

from [18] (also provided in the appendix of this ex- 32

tended abstract), effectively disregards half of the mea- 33

surements to achieve maximal invariance. In the di- 34

stributed approach, the same measurements that are 35

discarded by the centralized approach are employed to 36

provide invariance to the local inter-node dynamics. 37

6. DISCUSSION AND FUTURE WORKS 38
39

We considered fault detection in networked Linear 40

Time Invariant-Gaussian systems. More precisely, we 41

defined a hypothesis testing problem over the structure 42

of the inputs of the agents, and then derived a distri- 43

buted Uniformly Most Powerful Invariant detector with 44

Constant False Alarm Rate properties that is invariant 45

to most of the parameters of the systems. We address 46

the situation where there is little prior information avail- 47

able, and develop a distributed test starting from our 48

previous centralized results described in [18]. ‘Remark- 49

ably we obtain a distributed algorithm that has some 50

capability of detecting faults even if knowledge of the 51



overall system is really uncertain and the number of1

measurements is limited.2

As in the centralized case, tests that exploit informa-3

tion of the system have better performance in terms of4

false positives / negatives rates. Nonetheless, the more5

measurements that are taken the more the distributed6

detector is shown to be perform better, achieving per-7

formance of its centralized counterpart quickly.8

The value of the proposed strategy relies in its opti-9

mality properties, being in fact based on a maximally10

invariant statistic and being uniformly most powerful.11

This implies that in a certain sense it characterizes the12

performance that can be achieved when testing the posed13

hypotheses under the severe lack of knowledge assumed14

here.15

The main future direction is thus to compare the de-16

veloped strategy, both from practical and theoretical17

aspects, with the distributed fault detection algorithm18

that are based on dynamically identified systems. It is19

in fact necessary to understand if there are conditions20

s.t. the invariant test developed here is guaranteed to21

perform better than algorithms that start identifying22

the test and then perform tests on the identified model.23
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[11] M. Hušková, “Some invariant test procedures for 73

detection of structural changes,”Kybernetika, 74

vol. 36, no. 4, pp. 401–414, 2000. 75

[12] N. Begum and M. L. King, “Most mean powerful 76

invariant test for testing two-dimensional 77

parameter spaces,” Journal of Statistical Planning 78

and Inference, vol. 134, no. 2, pp. 536 – 548, 2005. 79

[13] S. Bose and A. Steinhardt, “A maximal invariant 80

framework for adaptive detection with structured 81

and unstructured covariance matrices,” Signal 82

Processing, IEEE Transactions on, vol. 43, no. 9, 83

pp. 2164–2175, 1995. 84

[14] K. Noda and H. Ono, “On ump invariant f-test 85

procedures in a general linear model,” 86

Communications in Statistics-Theory and 87

Methods, vol. 30, no. 10, pp. 2099–2115, 2001. 88

[15] E. Conte, A. De Maio, and C. Galdi, “Cfar 89

detection of multidimensional signals: an invariant 90

approach,” Signal Processing, IEEE Transactions 91

on, vol. 51, no. 1, pp. 142–151, 2003. 92

[16] A. De Maio, “Rao test for adaptive detection in 93

gaussian interference with unknown covariance 94

matrix,” Signal Processing, IEEE Transactions on, 95

vol. 55, no. 7, pp. 3577–3584, 2007. 96

[17] A. De Maio and E. Conte, “Adaptive detection in 97

gaussian interference with unknown covariance 98

after reduction by invariance,” Signal Processing, 99

IEEE Transactions on, vol. 58, no. 6, pp. 100

2925–2934, 2010. 101

[18] J. Weimer, D. Varagnolo, M. Stankovic, and 102

K. Johansson, “Model-invariant detection of 103

unknown inputs in networked systems,” in 104

European Control Conference (under review), 105

2013. 106



Appendix1

This appendix provides a proof for 8. We begin by writ-2

ing the measurement dynamics in 5 as3

yj(k + 1) = xj(k) +mj

∑

i∈Nj

aji

(
yi(k)− yj(k)

)

+ bjdj(k) + nj(k)

(11)4

where5

nj(k) = wj(k) + vj(k + 1)−mj

∑

i∈Nj

aji (vi(k)− vj(k))

(12)
6

7

nj(k) = wj(k) + vj(k + 1)−


1−mj

∑

i∈Nj

aji


 vj(k)

−mj

∑

i∈Nj

ajivi(k).

(13)

8

Since the noise correlation is unknown, we whiten the9

measurements by using only every other measurement10

and write the resulting time-series measurements as11

yℓ = ~Zℓθ + bjµjuℓ + nℓ (14)12

where13

Cov [nℓ] =σ2
0I + σ2

1

T
2∑

i=0

(
e2ie

⊤
2i+1 + e2i+1e

⊤
2i

)
(15)14

The unknown parameters induce a group of transforma-15

tion on the measurements,16

Since at the time of submission of this extended ab-17

stract the previous work in [18] is under review, this ap-18

pendix provides a centralized maximally invariant statis-19

tic for detection of unknown inputs in LTI-Gaussian net-20

worked systems.21

Specifically, the maximally invariant statistic is22

Tc[rℓ] =
r⊤ℓ Rℓrℓ

1

N c
ℓ − 1

r⊤ℓ
(
I −Rℓ

)
rℓ

(16)23

with 24

zℓ := HℓGEDy

Rℓ :=
HℓGEuℓu

⊤
ℓ E

⊤G⊤H⊤
ℓ

u⊤
ℓ E

⊤G⊤H⊤
ℓ HℓGEuℓ

N c
ℓ :=

T

2
−Nℓ −M + 1

(17) 25

and where the exploited quantities satisfy 26

y = [y1(0), . . . , yM (0), y1(1), . . . , yM (1), . . . , y1(T ), . . . , yM (T

H⊤
ℓ Hℓ = I −

[
u1 . . . uℓ−1 uℓ+1 . . . uM S1 . . . SM 1

]

G = I ⊗ [ 0 1 ]

p =

[
1

m1

, . . . ,
1

mM

]⊤
·




M∑

j=1

m−2
j




− 1

2

E =




p⊤

. . .

p⊤




D =




I

−I I
. . .

. . .

−I I




(18)

27

A UMPI test of size α for the centralized detector is 28

φℓ(zℓ) =

{
Hℓ,0 if Tℓ[zℓ] < F−1

1,Nc
ℓ
−1

(α)

Hℓ,1 otherwise.
(19) 29

7.1 Supporting Lemmas 30
31

This subsection sequentially introduces lemmas to: 32

1. obtain composed maximally invariant statistics; 33

2. obtain maximal invariance w.r.t. an unknown sub- 34

space bias; 35

3. obtain maximal invariance w.r.t. an unknown cor- 36

related noise; 37

4. obtain maximal invariance w.r.t. an unknown sub- 38

space gain; 39

5. obtain maximal invariance w.r.t. an unknown mea- 40

surement scaling. 41

In this subsection we use the notation r to denote a 42

generic measurement vector or a linear combination of 43

measurements. Additionally, in each of the following 44

Lemmas we re-use the same variables names to denote 45

different objects, in order to lessen the notational over- 46

head. Each lemma, thus, is an independent statement. 47

7.1.1 Composed maximally invariant statistic 48
49

If δ in Section 2 is composed by several nuisance pa- 50

rameters it is then convenient to obtain a statistic, T [·], 51

invariant to δ from the composition of other invariant 52

statistics, say T1[·], T2[·], . . ., where each statistic is in- 53

variant to some of the nuisance parameters in δ. The 54

following lemma states some sufficient conditions for a 55

composition of statistics to be maximally invariant to1

δ:2



Lemma 10 (Composed Maximally Invariant
Statistics) Let

• δ0, δ1 be two set of nuisance parameters;

• G0, G1 be two group of transformations, respec-
tively induced by the nuisance parameters δ0, δ1;

• T0[r] = Q0r be a statistic that is maximally in-
variant w.r.t. the transformation group G0;

The statistic T [r] = T1

[
T0[r]

]
is maximally invariant

w.r.t. the transformation group G1G0 if

• Q0Q
⊤
0 = I (i.e., Q0 is unitary);

• T [r] is maximally invariant w.r.t. the group

Ĝ :=
{
g
∣∣ g(r) = Q⊤

0 Q0g1(r), g1 ∈ G1

}
.

Proof. Invariance:3

g0 ∈ G0 : T
[
g0(r)

]
= T1

[
T0

[
g0(r)

]]
= T1

[
T0[r]

]
= T [r]

g1 ∈ G1 : T
[
g1(r)

]
= T1

[
T0

[
g1(r)

]]
= T1

[
Q0g1(r)

]

= T1

[
T0

[
ĝ(r)

]]
, ∃ĝ ∈ Ĝ

= T [r] .

(20)

4

Maximality:5

T
[
r̂
]
= T

[
r
]
−→ T

[
r̂
]
= T1

[
Q0r

]

−→ T
[
r̂
]
= T1

[
Q0Q

⊤
0 Q0r

]

−→ T
[
r̂
]
= T

[
Q⊤

0 Q0r
]

−→ r̂ = g1(r), ∃g1 ∈ G1.

(21)6

With a similar logic we can derive the following corol-7

lary, that can be applied to statistics resulting from in-8

vertible transformations:9

Corollary 11 (Maximality of Invertible Statis-
tics) With the same premises as in Lemma 10, if
T0 [r] is maximally invariant w.r.t. the group G0 and
Q1 is invertible, then the composed statistic T [r] =
T1

[
T0 [r]

]
= Q1T0 [r] is maximally invariant w.r.t. G0.

7.1.2 Maximal invariance w.r.t. a subspace bias10
11

Consider measurements generated according to12

r = ŝ+Hθ (22)13

where θ is a vector of nuisance parameters,H is a known 14

subspace of appropriate dimension, and ŝ is an arbitrary 15

signal. The nuisance parameter θ induces the group of 16

transformations 17

G =
{
g
∣∣∣ g(r) = r +Hθ

}
. (23) 18

It then follows that: 19

Lemma 12 (Maximal invariance w.r.t. a sub-
space bias) Let Q be s.t.

Q⊤Q = I −H
(
H⊤H

)−1
H⊤, QQ⊤ = I. (24)

Then the statistic T [r] = Qr is maximally invariant
w.r.t. G.

Proof. Invariance: 20

T
[
g(r)

]
= Q

(
r +Hθ

)
= Qr = T [r] . (25) 21

Maximality: 22

T
[
r̂
]
= T [r] −→ Qr̂ = Qr

−→ r̂ = r +
(
Q⊤Q− I

)(
r − r̂

)

−→ r̂ = g(r), ∃g ∈ G.

(26) 23

7.1.3 Maximal invariance w.r.t. a correlated noise 24
25

Consider measurements generated according to 26

r = ŝ+ n (27) 27

where n is a vector of Gaussian random variables with 28

covariance 29

Cov [n] = σ2
0I + σ2

1

(
ejt

⊤
j + tje

⊤
j

)
(28) 30

where σ0, σ1 ∈ R++ are unknown, tj is an arbitrary vec- 31

tor of appropriate dimension, and ej is the elementary 32

vector with a single unit entry in the j-th element. The 33

correlation induces the group of transformations 34

G =
{
g
∣∣∣ g(r) =

(
I + ejt

⊤
j

)
r
}
. (29) 35

It then follows that: 36

Lemma 13 (Maximal invariance w.r.t. a corre-
lated noise) Let Q be s.t.

Q⊤Q = I − eje
⊤
j , QQ⊤ = I. (30)

Then the statistic T [r] = Qr is maximally invariant
w.r.t. G.

Proof. Invariance:1

T
[
g(r)

]
= Q

(
I + ejt

⊤
j

)
r = Qr = T [r] . (31)2



Maximality:3

T
[
r̂
]
= T

[
r
]
−→ Qr̂ = Qr

−→ r̂ = r +
(
Q⊤Q− I

)(
r − r̂

)

−→ r̂ = g(r), ∃g ∈ G.

(32)4

7.1.4 Maximal invariance w.r.t. an unknown sub-5

space gain6
7

Consider measurements generated according to8

r =
(
I +H

)
ŝ (33)9

where ŝ is an arbitrary signal, H is an unknown sub-10

space of appropriate dimension with a known left eigen-11

vector, v⊤, corresponding to the unique zero eigenvalue12

of H. The nuisance parameter H induces the group of13

transformations14

G =
{
g
∣∣∣ g(r) =

(
I +H

)
r, v⊤H = 0, v⊤v = 1

}
.

(34)15

It then follows that:16

Lemma 14 (Maximal invariance w.r.t. an un-
known subspace gain) The statistic

T [r] = v⊤r (35)

is maximally invariant to G.

Proof. Invariance:17

T
[
g(r)

]
= v⊤

(
r +Hr

)
= v⊤r = T [r] . (36)18

Maximality:19

T
[
r̂
]
= T

[
r
]
−→ v⊤r̂ = v⊤r

−→ r̂ = r +
(
I − vv⊤

)(
r − r̂

)

−→ r̂ = g(r), ∃g ∈ G.

(37)20

7.1.5 Maximal invariance w.r.t. a measurement21

scaling22
23

Consider measurements generated according to24

r = σ
(
µs+ n

)
(38)25

where n is a vector of zero-mean white Gaussian r.v.s.,26

s is a known signal, and µ, σ ∈ R are unknown con-27

stants. The nuisance parameter σ induces the group of28

transformations29

G =
{
g
∣∣∣ g(r) = cr, c ∈ R

}
. (39) 30

It then follows that: 31

Lemma 15 (Maximal invariance w.r.t. a mea-
surement scaling) Let P be s.t.

P = I − s
(
s⊤s

)
s⊤. (40)

Then the statistic

T [r] =
r⊤Pr

r⊤
(
I − P

)
r

(41)

is maximally invariant w.r.t. G.

Proof. Invariance: 32

T
[
g(r)

]
=

c2r⊤Pr

c2r⊤
(
I − P

)
r

=
r⊤Pr

r⊤
(
I − P

)
r

= T [r] .

(42)
33

Maximality: 34

T
[
r̂
]
= T [r]

−→
r⊤Pr

r⊤
(
I − P

)
r

=
r̂⊤P r̂

r̂⊤
(
I − P

)
r̂

−→ r̂⊤
(
P − I

r⊤Pr

r⊤r

)
r̂ = 0

−→ r̂ = g(r), ∃g ∈ G.

(43) 35

7.2 Proof of Theorem 8 36
37

We employ the following notation to rewrite the mea-
surements as time-series:

x(k) := [x1(k), . . . , xM (k)]
⊤

y(k) := [y1(k), . . . , yM (k)]
⊤

d(k) := [d1(k), . . . , dM (k)]
⊤

w(k) := [w1(k), . . . , wM (k)]
⊤

v(k) := [v1(k), . . . , vM (k)]
⊤

These quantities shall not be confused with yj, dj, wj, 38

vj . The latter in fact correspond to, e.g., the set of 39

measurements of the specific agent j and all the times 40

k = 1, . . . , T , while y(k) corresponds to the set of mea- 41

surements relative to the specific time k and all the 42

agents j = 1, . . . ,M . 43

We begin with all the information contained in the 44

time-series measurements and apply an invertible trans- 45

formation such that 46

D







y(0)
..
.

y(T )






= (I +H)











x(0)
d(0) +w(0)

.

..
d(T − 1) +w(T − 1)











+D







v(0)
..
.

v(T )






(44) 47

where1

H :=











0
A− I 0

..

.
. . .

. . .

(A− I)A(T−2) . . . A− I 0











(45)2



and D was defined in Theorem 8. We begin by asking3

for invariance to the unknown subspace gain induced by4

H. Observing that A − I is the network Laplacian, it5

follows that it has a single zero eigenvalue corresponding6

to the left eigenvector p⊤. Thus we can directly apply7

Lemma 14 and write8

T0[y] = RD







y(0)
.
..

y(T )






= R











x(0)
d(0) +w(0)

.

..
d(T − 1) +w(T − 1)











+RD







v(0)
.
..

v(T )







(46)9

We then observe that the statistic has unknown corre-10

lated noise, written as11

Cov [T0[y]] =















σv + σw −σv

−σv 2σv + σw −σv

. . .
. . .

. . .

−σv 2σv + σw −σv

−σv 2σv + σw















(47)12

Applying thus Lemma 13 we obtain a statistic which13

is invariant to the correlated noise induced by T0[y] by14

writing15

T1

[

T0[y]
]

= QRD







y(0)
.
..

y(T )






= QR











x(0)
d(0) +w(0)

.

.

.
d(T − 1) +w(T − 1)











+2(σv+σw)Q







n(0)
.
..

n(T )






.

(48)16

Next we observe that the noise mean and non-local17

inputs induce a bias in the subspace18

I − F⊤
ℓ
Fℓ =

[

u1 . . . uℓ−1 uℓ+1 . . . uM S1 . . . SM 1
]

.

(49)19

We thus apply Lemma 12 and obtain the composed20

statistic21

T2

[

T1

[

T0[y]
]

]

= FℓQRD







y(1)
.
..

y(T )






= µℓFℓQR











x(0)
uℓ(0)

.

.

.
uℓ(T − 1)











+2(σv+σw)Q







n(0)
.
..

n(T )






.

(50)22

Lastly, we observe that (σv + σw) ∈ R induces a mea-23

surement scaling. We thus can apply Lemma 15 and24

obtain the T [zℓ] in (7).25

To prove then that the resulting test is maximally in-26

variant, we notice that T2[·], T1[·], T0[·] are all unitary.27

Additionally, we observe that T1[·] was designed after28

applying T0[·] and, similarly, T2[·] was designed after29

applying T1[. . .], etc., and thus the second requirement30

of Lemma 10 is by construction satisfied. Thus the com- 618

posed statistic is guaranteed to be maximally invariant. 619
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