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Abstract— This work considers the problem of detecting
unknown inputs in networked systems whose dynamics are
governed by time-varying unknown parameters. We propose
a strategy in opposition to the commonly employed approach
of first estimating the unknown parameters and then using
the estimates as the true parameter values for detection,
e.g. maximum-likelihood approaches. The suggested detection
scheme employs test statistics that are invariant to the unknown
parameters and do not rely on parameter estimation. We
specifically consider the case of severe lack of prior knowledge,
i.e., the problem of detecting unknown inputs when nothing is
known of the system but some primitive structural properties,
namely that the system is a linear network, subject to Gaussian
noise, and that a certain input signal is either present or not.
The aim is thus to analyze the structure and performances of
invariant tests in a limiting case, specifically where the amount
of prior information is minimal. The developed test is proven
to be maximally invariant to the unknown parameters and
Uniformly Most Powerful Invariant (UMPI). Simulation results
indicate that for arbitrary networked systems the parameter-
invariant detector achieves a specified probability of false alarm
while ensuring that the probability of detection is maximized.

Index Terms— hypothesis testing, invariant tests, linear sys-
tems, time varying systems, networked systems

I. INTRODUCTION

Many applications, including environmental monitor-
ing [1], building automation [2], wireless communica-
tions [3] and power grids [4], have networked dynamics
that exploit multitudes of sensors and actuators. As the
number of devices increases, so do the possibility of faults.
When undetected, these faults can lead to several flavors
of detriments: from mild inconveniences in HVAC systems
(poor air quality) to disruptive ripple effects in power systems
(extended blackouts).

While fault detection algorithms undoubtedly benefit from
the knowledge of accurate models, these models are of-
ten parametrized by unknown time-varying environmental
variables. For instance, in power transmission networks the
resistance of the transmission lines varies with temperature
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and icing conditions, while in building automation the heat
transfer between air-masses varies with the humidity, ex-
ternal temperature, and the opening or closing of windows
and doors. Under these uncertain conditions, it is common
to perform fault detection cascading parameter-estimation
algorithms with hypothesis testing ones. These maximum
likelihood approaches can yield significantly varying results,
based on the accuracy of the estimated parameters, see, e.g.,
[5, Example 1, page 46].

An alternative approach is to design hypothesis tests
that are invariant to the unknown model parameters. The
benefit of invariant testing approaches comes in that the
detector can be designed to have a specified performance
independent of the unknown time-varying parameters [6]. It
is then natural to ask how much the lack of prior knowledge
affects the performance of these invariant tests? This question
motivates this work, that queries the limits of invariant testing
techniques when the problem is to detect the presence of
unknown Gaussian inputs (or faults) in linear time-varying
networked systems governed by unknown parameters. More
specifically, we propose a maximally-invariant detector when
all the model parameters are unknown that maximizes the
probability of correct detection for a specified probability of
false alarm.

Literature review: we start by noticing that classical
methods for fault detection in the presence of unknown
model parameters exploit Generalized Likelihood Ratio
(GLR) strategies [7], summarized in: obtain the Maximum
Likelihood (ML) estimates of the parameters under the each
hypothesis, then test the likelihood ratio of these estimates.
ML solutions are common in almost all problems containing
unknown parameters (e.g. indirect adaptive control [8], blind
identification and equalization of communication channels
[9], machine learning [10], and in fault detection and iden-
tification [11]). The primary drawback of ML approaches
arises when the parameter estimates converge to a value other
than the true parameter value, as a direct consequence of
the parameters varying with time and/or the input signal not
being suitable for parameter estimation (or system identifi-
cation) [8]. As a corollary, and as noted in [12], Maximally
Invariant (MI) tests also outperform GLR approaches when
small data sets are available. However, when the parameter
estimation is unbiased, and as the Signal to Noise Ratio
(SNR) tends to infinity (e.g., when the number of measure-
ments approaches infinity, see [13]), the performance of the
GLR and UMPI strategies are asymptotically equivalent.

The desire to detect faults for arbitrary inputs in systems
with unknown parameters motivates the abundant space
reserved to invariant strategies in classical textbooks, e.g., [6,



Sec. 4.8], [14, Chap. 6], and the usage in several applications
as the detection of structural changes in linear regression
models [15], or in spectral properties of disturbances [16].

The parameter-invariant literature focuses mainly in find-
ing invariant methods in known linear models with unknown
or partially known covariance matrices [17], [18], [19], [20],
[21], and do not consider linear models with unknown time-
varying dynamics driven by noise. However, all parameter-
invariant efforts generally focus on identifying tests that
exploit maximally invariant statistics and establish conditions
that ensure Constant False Alarm Rate (CFAR) properties.

Statement of contributions: In this work, and beyond
the previous work, we assume the knowledge of just the fact
that the system dynamics are networked, linear with Gaussian
driving noises plus a weak knowledge on the structure of
the fault. Under these assumptions, we develop a test that
is maximally invariant to the unknown system parameters
and show the test to be Uniformly Most Powerful Invariant
(UMPI) and have a CFAR property. To the best of the
authors’ knowledge, the developed test herein is the one
requiring the smallest amount of prior information among
all the detectors proposed in literature for time-varying
networked systems. Characterization of the detector thus
identifies the best achievable performances when the amount
of prior information is minimal.

Structure of the paper: Section II reports the needed
basic results and definitions for invariant hypothesis testing.
Section III mathematically formulates the hypothesis testing
problem. We propose our testing technique along with its
statistical characterization in Section IV. Section V numer-
ically compares the performance of the proposed detector
with the performance of strategies endowed with more prior
information and no prior information for different operating
points and systems. Finally Section VI reports some con-
cluding remarks and proposes future extensions. For ease of
readability all the proofs are collected in the appendix.

II. NOTATION AND PRELIMINARIES

In this section, and commiserate with [6], we introduce
the notation, definitions, and methodology employed in de-
signing UMPI tests.

A. Notation

In this subsection, we illustrate the various variable no-
tations using varying fonts and capitalization of the letter
z:
• plain upper case italic fonts → constant, Z;
• plain lower case italic fonts → scalar (or function with

scalar range), z;
• bold lower case italic fonts → vector (or function with

vectorial range), z;
• bold lower case italic fonts with overhead vector →

vector of concatenated vectors, ~z;
• bold upper case italic fonts → matrix, Z.
• bold upper case italic fonts with overhead vector →

matrix of concatenated matrices, ~Z.

For vectors we write zi to denote the i-th position of z.
Similarly, For vectors of vectors we write ~zi to denote the i-
th sub-vector. Lastly, for matrices we write Zi to be the i-th
column of Z. We also use ⊗ to denote Kronecker products,
IN to be the identity matrix of dimension1 N , 0 and 1 to
be a vector of all zeros and all ones, respectively, and ej
to denote the elementary vector consisting of all zeros with
a single unit entry in the j-th position. For arbitrary Z, we
define the following matrices:

PZ := Z
(
Z>Z

)−1
Z>

P⊥Z := I − PZ

UZ :=
{
U | UU> = PZ , U

>U = I
}

U⊥Z :=
{
U | UU> = P⊥Z , U

>U = I
} (1)

Additionally, we define the following matrix sets:

D := {Z | Zij = 0, ∀i 6= j}
D+ := {Z | Z ∈ D, Zij > 0, ∀i 6= j}
Lz :=

{
I −ZL | Z ∈ D, Zjj = zj , 1>L = 0

}
.

We note that D corresponds to the set of all diagonal
matrices, while D+ represents all positive definite diagonal
matrices. Lz is the set of all matrices having 1 as a left
eigenvalue. Lastly, we employ the notation Pr [x|y] and
E [x|y] to denote the probability of x given y and the
expected value of x given y, respectively, where x and y
are random variables.

B. Hypothesis Testing Preliminaries

Let y be a r.v. with probability density f(y ; d, δ)
parametrized in d, δ. We define d to be the set of test
parameters, and δ to be the set of nuisance parameters, which
induce a transformation group G, i.e., a set of endomor-
phisms g on the space of the realizations y [6, Sec. 4.8].
This group of transformations partitions the measurement
space into equivalence classes (or orbits) where points are
considered equal if there exist g, g′ ∈ G mapping the first
into the second and vice versa.

Definition 1 (Maximally Invariant Statistic [6]): A statis-
tic t[y] is said to be maximally invariant w.r.t. a transfor-
mation group G if it is:

invariant: t[g(y)] = t[y], ∀g ∈ G
maximal: t[y] = t[ý] =⇒ ý = g(y), ∃ g ∈ G

A statistical test φ based on an invariant statistic can be
said to be an invariant test:

Definition 2 (Invariant Test [6, Sec. 4.8]): Let G be a
transformation group, t[y] a statistic, and φ(·) a hypothesis
test. φ is said to be invariant w.r.t. G if

φ
(
t[g(y)]

)
= φ

(
t[y]
)

(2)

1The subscript is omitted when the dimension is implicit.



for every g ∈ G.

The statistical performance of an invariant test φ is mea-
sured in terms of its size and power (see Definition 3).
Invariant tests are desired to be Uniformly Most Powerful
Invariant (UMPI):

Definition 3 (Uniformly Most Powerful Invariant
(UMPI) Test [6, Sec. 4.8]): Let G be a transformation
group corresponding to δ, t[y] a statistic and φ(·) a test
for deciding between H0 : d = d0 and H1 : d = d1 that is
invariant w.r.t. G. Then φ

(
t[y]
)

is said to be an uniformly
most powerful invariant (UMPI) test of size α if for every
competing invariant test φ′

(
t[y]
)

it holds that

(size)
Pr
[
φ
(
t[y]
)

= H1

∣∣ d0, δ] = α;

Pr
[
φ′
(
t[y]
)

= H1

∣∣ d0, δ] ≤ α;

(power)
Pr
[
φ
(
t[y]
)

= H1

∣∣ d1, δ] ≥
Pr
[
φ′
(
t[y]
)

= H1

∣∣ d1, δ].
As a remark, thanks to the Karlin-Rubin theorem [6,

Sec. 4.7, page 124], a scalar maximally invariant statistic
whose likelihood ratio is monotone can be used to construct
an UMPI test.

III. PROBLEM FORMULATION

Consider the networked discrete-time linear dynamics

x(k + 1) = A(k)x(k) +Bd(k) +w(k)

y(k) = x(k) + v(k)
(3)

where
• x(k) ∈ RM denotes the state of the M -node network;
• A(k) ∈ Lm is the time-varying network dynamics be-

tween the M nodes, assuming a time-invariant network
weighting vector, m 2;

• B ∈ D represents the time-invariant input matrix;
• y(k),d(k) ∈ RM are the node measurements and node

inputs, respectively;
• w(k),v(k) ∈ RM are respectively the Gaussian process

noise and Gaussian measurement noise, with moments:

E [w(k)] = w, E [v(k)] = v

E
[
(w(k)−w)(w(k′)−w)>

]
=

{
Λ(k) k′ = k
0 otherwise

E
[
(v(k)− v)(v(k′)− v)>

]
=

{
Γ(k) k′ = k
0 otherwise

E
[
(v(k)− v)(w(k′)−w)>

]
=

{
Ω(k) k′ = k
0 otherwise

2This work holds for any time-varying linear system having dynamics
with at least one known eigenvector and corresponding eigenvalue. This
property is satisfied for systems having linear networked dynamics.

having the property3:

Σ = Λ(k + 1) + Λ(k) + Γ(k)−Ω(k)−Ω>(k).

We assume that the node inputs are composed of a known test
signal and an unknown nuisance signal, and wish to test for
the existence of the test signal. More formally, let [0, . . . , T ]
be the time interval for which we have measurements4.
We can then write the time-concatenated measurements as
~y :=

[
y>(0), . . . ,y>(T )

]>
. Additionally, we define the

class of input signals considered in this manuscript by writing
the time-series concatenation of the j-th node input, ~dj :=

[dj(0), . . . ,dj(T )]
>, as

~dj = ~Sj
~θj + µj~uj (4)

where
• ~uj :=

[
uj(0), . . . , uj(T )

]>
is the test input signal;

• µj ∈ {0, 1} is a constant test parameter;
• ~Sj ∈ RT×Nj is a nuisance signal subspace;
• ~θj ∈ RNj is a constant nuisance parameter.

For the system and input described in (3) and (4), we classify
the information as either available or unavailable for testing
as follows:

Assumption 1 (Available Information):
• the time-series measurements y(0), . . . ,y(T )
• the test input signals ~u1, . . . , ~uM ;
• the nuisance subspaces ~S1, . . . , ~SM ;
• the network weighting vector, m;

Assumption 2 (Unavailable Information): For all k ∈
{0, . . . , T},
• the matrices A(k) and B;
• the noise moments w,v,Σ,Λ(k),Γ(k),Ω(k);
• the parameters ~θ1, . . . , ~θM and µ1, . . . ,µM ;
• the initial condition x(0);

Under these assumptions, our binary hypothesis testing
problem is formulated as testing whether µj = 0 or µj = 1:

Assumption 3 (Hypothesis Test): µj satisfies either one
of the two following hypotheses:
Hj,0 (null hypothesis): µj = 0
Hj,1 (alternative hypothesis): µj = 1

In words, both hypotheses assume the actual node inputs,
~dj to be unknown, since θj is unknown, but with a fixed

3In this work, we allow time-varying correlated process and measurement
noise, such that the time-difference of the measurements, i.e. y(k)−y(k−
1), has a time invariant covariance. We note that this property is satisfied
when the process and measurement noises are i.i.d..

4T is assumed to be even for notational simplicity.



and known functional structure. Hj,1 additionally assumes
the presence of a test input ~uj .

Our aim is the following: develop a test that considers
a specific node input ` ∈ {1, . . . ,M}, and decides among
the hypotheses H`,0 vs. H`,1 in Assumption 3 using only
the information in Assumption 1 and, at the same time,
being maximally invariant to the unavailable information in
Assumption 2.

More precisely, we aim to find a test that detects whether
node ` has a fault independently of whether a fault exists
at any other node j 6= ` (fault isolation) and maximizes
the probability of detection (power) for any probability of
false alarm (size), i.e., we require the detector to be UMPI.
Formally, thus, we aim to solve the following:

Problem 1
1) find a statistic t[~y] that satisfies Definition 1 (maximal

invariance) w.r.t. the transformation group induced by
nuisances parameters in Assumption 2;

2) find a test φ
(
t[~y]
)

that satisfies Definition 3 (UMPI
test) w.r.t. to the class of tests based on the previously
introduced maximal invariant statistic t

[
~y
]
.

IV. THE UMPI TEST

Following the methodology introduced in Section II, in
this section we solve Problem 1 and provide the primary
contribution of this work. To solve Problem 1 requires
identifying the group of transformations induced by the
unavailable information in Assumption 2. To identify this
group, we begin by defining the invertible matrix

C :=


IM
−IM IM

. . . . . .
−IM IM

 ∈ {0, 1}TM×TM

and recall that any invertible mapping of the measurements
preserves maximal invariance [6] such that the time-series
measurements can be written as

C~y = (ITM +E)


x(0)

d(0) +w(0)
...

d(T − 1) +w(T − 1)

+C

v(0)
...

v(T )

 , (5)

where

E :=
[
Eij

]
Eij =

{ (
A(i− 1)− IM

)∏i−2
t=j A(t) if j > i > 1

0 otherwise.

We observe that

p :=

[
1

m1
. . .

1

mM

]>
is an eigenvector of E> corresponding to the zero eigen-
value, E>p = 0. The transformed measurements (5) can

thus be written, for some εF ∈ R2M+1 and εp ∈ RT (M−1),
as

C~y = (IT ⊗Up) (F`εF + µ`B``~u` + n) +
(
IT ⊗U⊥p

)
εp

(6)

where

F` :=
[
~u1 . . . ~u`−1, ~u`+1 . . . ~uM , ~S1 . . . ~SM , 1, e1

]
and n is a zero-mean Gaussian random variable having
covariance

E
[
nn>

]
=


p>Γ(0)p

p>p
π0

π0 σ π1
. . . . . . . . .

πT−2 σ πT−1
πT−1 σ


with

σ =
p>
(
Λ(k) + Γ(k)−Ω(k)−Ω(k)>

)
p

p>p
=
p>Σp

p>p

πk =
p> (Ω(k)− Γ(k))p

p>p
.

The transformed measurements in (6) utilize nuisance param-
eters εF , εp, σ, π0, . . . πk, each of which is a unique function
of the unknown parameters in Assumption 25. We thus
define the group of transformations induced by the nuisance
parameters in the following lemma.

Lemma 1 (Nuisance Parameter Transformations): The
group of transformations induced by the nuisance parame-
ters is

G` =

g
∣∣∣∣∣∣∣
g(~y) =σ (IT ⊗Up)G

(
IT ⊗U>p

)
C~y

+ (IT ⊗Up) (F`εF + µ`B``~u`)

+
(
IT ⊗U⊥p

)
εp


(7)

where for some c, c0, . . . , cT
2 −1
∈ R

G = IT + ce1e
>
1 +

T
2 −1∑
i=0

cie2ie
>
2i+1.

In words, the group of transformations induced on the
time-series measurements, ~y, by the nuisance parameters
in Assumption 2 is a composition of the following four
transformations:
• an unstructured time-series bias, at each time step, in

the null-space of p, induced by the unknown time-
varying networked dynamics, A(0), . . . ,A(T ), namely(
IT ⊗U⊥p

)
εp;

5The explicit realization of εF and εp are omitted to lighten the
notational complexity. The mere existence of these parameters suffices in
this work since they are known to be functions of the underlying unknown
nuisance parameters.



• a structured time-series bias, in the direction of p, in-
duced by the unknown node inputs, d1, . . . ,dM , namely
(IT ⊗Up)F`εF ;

• a structured time-series bias, in the direction of p,
induced by the unknown node input gain, B``, in the
direction of ~u`, namely µ` (IT ⊗Up)B``~u`;

• a noise-whitening scaling of the time-series measure-
ments, in the direction of p, induced by the unknown
moments of the process noise and measurement noise,
namely, σ (IT ⊗Up)G

(
IT ⊗U>p

)
C~y.

We now introduce a statistic t`[~y] that is maximally invariant
for the group of transformations G` introduced in Lemma 1:

Theorem 1 (Maximally Invariant Statistic): A statistic
that is maximally invariant to G` and solves Problem 1-
1 is

t`[~y] =
r>` Ps`

r`
1

N` − 1
r>` P

⊥
s`
r`

(8)

with

r` = U⊥QF`
Dp~y

s` = U⊥QF`
Q~u`

N` =
T

2
− rank

(
U⊥QF`

)
assuming

p :=
[

1
m1

. . . 1
mM

]>
Dp := IT

2
⊗
[
−U>p U>p

]
Q := IT

2
⊗
[

0 1
]

Proof: A proof is provided in the appendix.
We observe that the maximally invariant statistic in (8) can
be equivalently written as a ratio of independent chi-square
random variables. This particular ratio is known to follow
an F -distribution, which is monotone. Thus, by applying the
Karlin-Rubin theorem [6], the following corollary results:

Corollary 1 (UMPI Test): A UMPI test w.r.t. G` of size
α that solves Problem 1-2 is

φ(t`[~y]) =

{
H`,0 if t`[~y] < F−11,N`−1(α)

H`,1 otherwise.
(9)

where F−1n,m(α) is the inverse central cumulative F -
distribution of dimensions n and m.

V. NUMERICAL EXAMPLES

We evaluate the test in (9) performing three Monte-Carlo
characterization as follows:

1) we fixed a desired probability of false alarms α (0.01,
0.1 and 0.25);

2) we randomly generated 500 stable time-invariant net-
worked systems having M = 10 nodes, like (3), as

Aij ,Bjj ∼ U [−0.5, 0.5] mj ∼ U [1, 2]
wj ,vj ∼ N (0, 1) Γjj ,Λjj ∼ U [0.1, 1]

TABLE I
RANDOM EXTRACTION MECHANISMS FOR THE GENERATION OF THE

SYSTEMS (3). N INDICATES GAUSSIAN DISTRIBUTIONS, U UNIFORM

DISTRIBUTIONS. ALL THE QUANTITIES ARE EXTRACTED

INDEPENDENTLY.

described in Table I (i.e., we discarded the unstable
realizations). All unspecified terms are assumed to be
zero.;

3) for each of the 500 systems (3) we generated exactly
one realization yj(1), . . . , yj(500), j = 1, . . . , 10;

4) for each T = 1, . . . , 500 and each of the 500 systems (3)
we executed the following three tests, all with the same
desired probability of false alarms α:

a) full information test: assume the perfect knowledge
of the networked dynamics A and B; the moments
of the process and measurement noises w, v, Γ, Λ;
the parameters θj ; the initial conditions xj(0) (j =
1, . . . , 10). Then design the Uniformly Most Powerful
(UMP) test for testing H`,0 vs. H`,1 given all this
information;

b) UMPI test: our test (9);
c) no information test: perform a weighted coin flip s.t.

the desired probability of false alarms α is met.
The outcomes are then summarized in the following

Figures 1, 2 and 3, that plot for each test and each T
the average correct detection rate reached over the 500
considered realizations of system 3.
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Fig. 1. Monte-Carlo characterization of the detection tests given α = 0.01.

From the graphics we draw the following conclusions.
All three tests, the full information UMP test, the UMPI
test described in this work, and the random coin flip test
all yield the same probability of false alarm (by design),
but have varying probability of detection. Specifically, we
note that the performance of the full-information UMP test is
always better than the UMPI test and the coin flip. Before the
number of measurements passes the threshold N` (indepen-
dent of the chosen α) the UMPI test is equivalent to a coin
flipping. This results from the fact that when there are few
measurements, all possible measurements can be explained
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Fig. 2. Monte-Carlo characterization of the detection tests given α = 0.1.
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Fig. 3. Monte-Carlo characterization of the detection tests given α = 0.25.

by the unknown parameters. Only after N` measurements
is there enough information to begin testing better than
random chance. Once the threshold is exceeded, the test
starts increasing its correct detection rate, discerning better
and better. Eventually it approaches the same performance of
the full information-based test, i.e., the best one might desire
(with different speeds, depending on the selected probability
of false alarms). As expected, the convergence rate of the
UMPI test to a high probability of detection decreases as
the probability of false alarm decreases. Indicating that to
achieve high detection rates with a low probability of false
alarm requires, in general, more measurements.

VI. DISCUSSION AND FUTURE WORKS

We considered a hypothesis testing problem defined over
networked linear time-varying Gaussian systems, and then
derived an Uniformly Most Powerful Invariant detector with
Constant False Alarm Rate properties that is tailored for
situations where the prior information available is little.
Despite the high degree of uncertainty on the system, the
offered testing strategy has some power, i.e., it is able to
actually detect faults also when the number of measurements
is limited.

Clearly the detector’s performance, in terms of false pos-
itives / negatives rates, is worse than the performance of
tests that exploit deeper knowledge of the system (see the
numerical results provided in Section V). This accords with
the intuition that one should always derive tests that exploit
all the information available.

Nonetheless the considered strategy has the valuable prop-
erty of providing a lower bound on the performance that can
be achieved in absence of prior information on a broad class

of networked systems. This claim derives from the fact that
the derived test has two optimality properties: it is based
on a maximally invariant statistic and it is uniformly most
powerful. Paraphrasing, every other invariant fault detector
defined over the same hypothesis testing problem will have
at best the same performance of the here proposed strategy
(again in terms of false positives / negatives rates). Moreover,
to have the same performance, it must be essentially based
on the same statistic considered here.

The offered strategy raises also an important and inter-
esting research direction. Namely, how should the scheme
be compared with strategies that initially estimate the pa-
rameters with system identification or Maximum Likelihood
approaches and then in cascade perform classical and non-
invariant tests. The mathematical problem is in fact to un-
derstand if there are conditions for which one of the various
strategies is ensured to perform better or worse than the
other ones, and why. This is undoubtedly useful in practical
scenarios, where one always aim to exploit the best available
detector.
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APPENDIX

This appendix provides a proof for Theorem 1.
Proof:

Invariance: Observing that

U⊥QF`
Dpg(~y) =σr` + µ`B``s` (10)

then

t
[
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= t
[
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]
(11)

Maximality: Let

r` = U⊥QF`
Dp~y

ŕ` = U⊥QF`
Dp~́y

(12)

and
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(
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)
C (13)

then it holds that
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−→s>` ŕ` = σs>` r` ∃σ ∈ R
−→ŕ` = σr` − P⊥s`

(σr` − ŕ`)
−→ŕ` = σr` + µ`B``s`, ∃µ`,B`` ∈ R

−→Dp~́y = σDp~y − P⊥QF`

(
σDp~y + µ`B``Q~u` −Dp~́y

)
−→Dp~́y = σDp~y + µ`B``Q~u` +QF`εF , ∃εF ∈ R2M+1
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− P⊥Q
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εp, ∃εp ∈ RT (M−1)

−→~́y = g (~y) , ∃g ∈ G`
(14)


